
Data Mining 1
Cheat Sheet

Let’s learn some CBB Crew

02/02/2020

Metrics

1 Definition of a metric

We have vectors x1, x2, x3 ∈ Rd that form an Euclea-
dian space of dimension d. A function is a metric iff

1. d(x1, x2) ≥ 0

2. d(x1, x2) = 0 if and only if x1 = x2

3. d(x1, x2) = d(x2, x1)

4. d(x1, x3) ≤ d(x1, x2) + d(x2, x3)
(Triangle inequality)

2 Similarity measures

2.1 Similarity measures on vectors

We assume that x, x′ ∈ Rd

Manhattan distance

d(x, x′) =

d∑
i=1

|xi − x′i|

In a binary vector this definitions corresponds to the
Hamming distance.

Euclidean distance

d(x, x′) =

√√√√ d∑
i=1

(xi − x′i)2

Chebyshev distance

d(x, x′) = max
i

(|xi − x′i|)

Minkowski distance

d(x, x′) = (

d∑
i=1

|xi − x′i|p)
1
p

where p ∈ R+∧p ≥ 1. The larger p the more deviations
in one dimension matter. For p → ∞, the Minkowski
distances converges to the Chebyshev distance.

2.2 Similarity measures on finite sets

Jaccard coefficient

j(A,B) =
|A ∩B|
|A ∪B|

Jaccard distance

d(A,B) = 1− j(A,B) =
|A ∪B|−|A ∩B|

|A ∪B|

A problem with Jaccard measures occurs when one set
is much smaller than the other one. The overlap can be
big but the coefficient will still be very small.

Overlap coefficient

o(A,B) =
|A ∩B|

min(|A|, |B|)

Here min is the minimal cardinality. It sets the the over-
lap in relation to the smaller set. (c.f Jaccard)

Sorensen-Dice coefficient

o(A,B) =
2|A ∩B|
|A|+|B|

Single link distance function

d(A,B) = min
a∈A,b∈B

dvector(a, b)

Complete link distance function

d(A,B) = max
a∈A,b∈B

dvector(a, b)

Average link distance function

d(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

dvector(a, b)

2.3 Similarity measures on strings

k-mer based similarity measures Goal: Quantify
the similarity between words w and w’:

• a k-mer is a substring of length k.

• Represent each string w as a histogram of k-mer
frequencies hk(w).

• The spectrum kernel counts number of matching
pairs of k-mer in w and w’.

1

2.4 Similarity measures on nodes

Shortest path distance Objects are nodes in a graph
G. Edge weights w(i, j) represent distances between
nodes i and j .
Goal: to quantify the similarity of an arbitrary pair of
nodes. Floyd-Warshall’s algorithm allows to com-
pute all pairs-shortest paths in O(n3), where n is the
number of nodes in G.
Algorithm 1: Floyd-Warshall’s algorithm (G =
(V,E,w))

Input : Graph with vertices V , edges V and
weights w.

Output: Matrix of shortest path distance D,
Dij = d(i, j),

1 d(i, j) := w(i, j), if (i, j) ∈ E;
2 d(i, j) :=∞, if (i, j) /∈ E;
3 for k = 1 : n do
4 for i = 1 : n do
5 for j = 1 : n do
6 if d(i, j) > d(i, k) + d(k, j) then
7 d(i, j) := d(i, k) + d(k, j)
8 end
9 end

10 end
11 end

2.5 Similarity measures on time series

Dynamic time warping It is the cost of an optimal
alignment between the measurements of two time se-
ries, x and x′. Individual time points are compared by
a base distance function d. The function DTW can be
computed recursively.

DTW (i, j) = d(xi, x
′
j)+

min

DTW (i, j − 1) repeat xi
DTW (i− 1, j) repeat x′j
DTW (i− 1, j − 1) repeat neither

where DTW (0, 0) = 0, DTW (i, 0) =∞, DTW (0, j) =
∞ ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ d′.

2.6 Similarity measures on graphs

There are different approaches to graph comparisons:

• Graph isomorphism or subgraph isomorphism
test

• Graph edit distance → cost of transforming one
graph to another graph

• Topological vectors→ map graph to vectors then
apply vectorial distance functions

Let G be a graph with vertices V and edges E . The
Wiener Index is a topological approach to represent
graphical properties of a molecule:

v(G) =
1

|P|
∑
p∈P
L(p)

where P is the shortest paths in Graph G and L(p) is
the length of path p.

Shortest path kernel can be used to compare graphs
G and G′. The simplest instance of this class is a prod-
uct between the Wiener indices of G and G′

k(G,G′) = v(G)v(G′)

SPKernel on unweighted and undirected graphs
With two graphs G1, G2 and their corresponding ad-
jacency matrices A1, A2 the shortest path kernel can be
calculated by:

1. Transforming the adjacency matrices into shortest
path matrices S1, S2, where s(i, j) is the length of
the shortest path between i and j.

2. calculate the SPKernel by:

Ksp(S1, S2) =
∑
e1∈S1

∑
e2∈S2

K1
walk(e1, e2)

K1
walk(e1, e2) =

{
1, if weight(e1) = weight(e2)

0, otherwise

3. e1 is an edge walk of lenght l in S1, which is a
non-zero entry of S1. Since S1 is symmetric, only
the upper or lower triangular matrix of S1 should
be considered.

The runtime complexity of the SPkernel is in O(n3),
where n is the number of nodes (vertices).

The Weisfeiler-Lehman kernel is a procedure that
allows one to compute the similarity between graphs
efficiently. The following steps are executed on the two
graphs:

Algorithm 2: Weisfeiler-Lehmann Kernel

1 for h steps do
2 Sort: represent each node v as a sorted list Lv

of its neighbours
3 Compress: the sorted label using a hash value

h(Lv)
4 Relabel: v using the hash value h(Lv)
5 Count: the labels obtained in each graph n⇒

feature vector representation of the graph:
φ(h)(Gn)

6 Kernel value is the inner product of the
vectors: k(h)(G1, G2) = 〈φ(h)(G1), φ(h)(G2)〉

7 end

The runtime complexity of the W-L kernel per graph
pair is in O(mh) and in O(Nmh + N2nh) where h is
the amount of iterations, m is the size of the list of the
unhashed graph, which is equal to the number of edges
and n is the size of the labels of the hashed graph.

2

Classification
A training set is a dataset of pairs {(xi, yi)}ni=1 which is
a set of objects and their known class labels. The test
set is a dataset of test points {x′i}di=1 with unknown
class label. The classification function f(x′i) predicts a
class label y′i. There exist binary (y ∈ {0, 1}), mulit-
class (y ∈ {1, ..., n}3 ≤ 3 ∈ N) or regression (y ∈ R)
problems.

3 Evaluating classifiers

The Contingency Table is given by:

y=1 y = -1
f(x) = 1 TP FP
f(x) = -1 FN TN

The accuracy is defined as:

accuracy =
TP + TN

TP + FP + FN + TN

The precision is defined as:

precision =
TP

TP + FP
=

TP
”actual results”

The recall is defined as:

recall =
TP

TP + FN
=

TP
”predicted results”

There is a trade-off between precision and recall: by
predicting all points to be positive one can guarantee
that the recall is 1. However, the precision will then
be bad. The precision recall break-even point is
the value at which precision and recall are identical.

3.1 Dependence on Classification Thresh-
old

TP, FP, TN, FN depend on f(x) where x ∈ D. s : D → R
is a scoring function and θ ∈ R is a threshold.

f(x) =

{
1 if s(x) ≥ θ,
−1 if s(x) < θ,

Since predictions based on f vary with θ it is important
to report the results as a function of θ. The efficient
strategy to compute all solutions as a function of θ is to
rank all points x by their score s(x).

3.2 ROC curves

The Receiver Operating Characteristics Curve, which
represents the true positive rate ((TP)/(TP +
FN)) versus the false positive rate (FP)/(FP +
TN).

• the curve goes from (0,0) to (1,1)

• a prefect classifier goes through the point (0,1)

• the ROC curve does not depend on an arbitrarily
chosen threshold θ, but it seems difficult to sum-
marize the performance of a classifier in terms of
a ROC curve. We need the AUC.

The Area under the Receiver Operating Characteristics
(AUC), a number between 0 and 1. When we present
one negative and one positive test point to the classifier,
then the AUC is the probability with which the classi-
fier will assign a larger score to the positive than to the
negative point.

• The larger AUC, the better the classifier.

• The AUC of a perfect classifier can be shown to
be 1, the one of a random 0.5 and the one of a
stupid 0.

3.3 PR curve

2-D plot of (recall,precision) values for different val-
ues of θ. Starts at (0,1): Full precision, no recall. The
precision recall break-even point is the point at which
the precision-recall-curve intersects the bisecting line.
The area under the precision-recall-curve (AUPRC) is
another statistic to quantify the performance of a clas-
sifier. It is 1 for a perfect classifier, that is, it reaches
100% precision and 100% recall at the same time.

3.4 Evaluating classifiers

It is wrong to optimize parameters of a classifier by try-
ing out different values and picking those that perform
best on the test set. These parameters are overfit on
this particular test dataset, and may not generalize to
other datasets. Instead, one needs an internal cross-
validation on the training data to optimize parameters.

Cross-validation Optimize the classifier only on the
test set. In every loop chose a test object and train the
parameters on it. Finally, take the average/median that
gives the overall best result.

Algorithm 3: k-fold Cross validation

1 Partition the dataset into k subsamples.
2 for k − 1 subsamples do
3 use them as training data and test set:
4 for k − 1 partitions do
5 make sure that one is kept as a test set:
6 Train on k − 2 partitions, and evaluate on

left over partition.
7 end
8 end
9 Get the value of the hyperparameter that best

performs on the data that has not been used for
training.

Choosing a classifier

• Quality of predictions - but be aware of the No-
Free-Lunch-Theorem

• Runtime and scalability on high-dimensional data
and large datasets

• Interpretability of the classification decision

• Applicability to diverse types of structured data

4 Nearest Neighbour Classification

Given x we predict its label y by

xi = argmin
x′∈D

||x− x′||2⇒ f(x) = yi

3

The predicted label of x is that of the point closest to it,
its nearest neighbour.

k-NN classification An object is classified to the class
most common among its k nearest neighbors (k ∈ N).
The larger k the lower the influence of single noisy
points on the classification. Use odd k to avoid ties
in binary classification. k-NN is instance based and lazy
learning.

Runtime

• O(n) to find nearest neighbour in 1-NN.

• O(n+ nlogn) to find the k-NN.

Speed up k-NN Use the triangle inequality:

d(x1, x2) ≥ d(x1, x3)− d(x2, x3)

If you know d(x1, x3), d(x2, x3) you can provide a
lower bound on d(x1, x2). If a point is closer to x1

than d(x1, x3) − d(x2, x3) you don’t need to calculate
d(x1, x2) ⇒ it is good to have the points ordered before-
hand.

Set the parameter k Use Bootstrapping and cross-
validation and the trainingset with different choices of
k and pick the one with the highest accuracy.

Weight the dimensions The Mahalanobis distance
takes the covariance structure between features into ac-
count.

dM (x, x′) =
√

(x− x′)>Cov(Xi, Xj)−1(x− x′)

With the covariance matrix defined as (Xi random vari-
able, µi its mean):

Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)]

5 Naive Bayes

The Naive Bayes classification classifies x into one of m
classes y1, ..., ym:

arg max
yi

P (Y = yi|X = x)

= arg max
yi

P (X = x|Y = yi)P (Y = yi)

P (X = x)

The actual classifier We simplify by assuming:

1. P (X = x) is the same for all classes ignoring the
evidence (denominator)

2. Naive assumption: if x is multidimensional we as-
sume that the features are conditionally indepen-
dent given the class label (often not true in the
life sciences)

arg max
yi

P (Y = yi|X = x) ∝

P (Y = yi)

d∏
j=1

P (Xj = xj |Y = yi)

Training the model

• One has to estimate P (Y): typically one assumes
that all classes have the same probability, or one
infers the class probabilities from the class fre-
quencies in the training dataset.

• One has to estimate P (X|Y): popular choices for
binary data is the Bernoulli distribution and the
Normal distribution for continuous data.

Advantages

• Speed: Effort of prediction for one test point is
O(md), as we have to compute the class posterior
for all m classes.

• Ability to deal with missing data: Missing features
can simply be dropped when evaluating the class
posteriors

• Ability to combine discrete and continuous fea-
tures: Use discrete or continuous probability dis-
tributions for each attribute

• Practical performance: Despite the unrealistic in-
dependence assumption on the features, Naive
Bayes often provides good results in practice.

6 Linear Discriminant Analysis

We are in a two-class classification problem. Both
classes are equally likely, i.e. their prior probabilities
are equal. We assume that:

• our features, i.e their conditional probability
P (X | Y), follow a multivariate normal distribu-
tion.

• their covariance matrices are equal: instead of
working with Σ0 and Σ1, we only have to care
about a single matrix Σ

• two means µ0, µ1 that may be different

Given y ∈ {0, 1}, the probability density distribution for
our features is thus given by:

fN (µy,Σ)(x) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(x− µy)>Σ−1(x− µy)

)
Predicting class 1 if the log-likelihood ratio is greater
than 0 or, more generally, greater than some positive
threshold.

logL(x) = log

(
P (Y = 1)P (X = x | Y = 1)

P (Y = 0)P (X = x | Y = 0)

)

4

The denominator and numerator are parts of the right-
hand side of the theorem but the evidence term is ig-
nored:
P (Y | X) = P (X|Y)P (Y)

P (X)

Plugging in the normal distribution into the log likeli-
hood ratio, we see that only the exponential terms re-
main because we assume that Σ0 = Σ1 = Σ. Hence, we
are left with an expression of the following form:

log

(
exp

(
− 1

2 (x− µ1)>Σ−1(x− µ1)
)

exp
(
− 1

2 (x− µ0)>Σ−1(x− µ0)
))

Since log
(
x
y

)
= log(x) − log(y), and log(exp(x)) = x,

the above equation simplifies to:

−1

2
((x−µ1)>Σ−1x−µ1) +

1

2
((x−µ0)>Σ−1(x−µ0))

Switching the term for 0 and 1 gives the desired form
of the equation. This expression can be brought into a
simpler form by collecting terms that depend on x and
terms that do not depend on x.
However, this classifier suffers from computational in-
efficiencies in higher dimensions, because inverting Σ
is very costly. (O(n2.373))

7 Logistic Regression

Logistic regression is a classification for binary output
variables y ∈ {−1, 1}. We define a auxillary vari-
able z, expressed as a linear function of the input x,
z =

∑
i=1 wixi + w0. The logistic function maps to the

interval [0,1]:

f(z) =
exp(z)

exp(z) + 1
=

1

1 + exp(−z)

It can be rewritten such that fw(x) is the probability
that x is in class 1.

fw(x) = f(〈w, x〉) =
1

1 + exp
(
−(w0 +

∑d
i=1 wixi)

)

The inverse of the logisitc function g = f−1, the logit or
log-odds function clarifies the link to linear regression
(g ◦ fw).

g(fw(x)) = ln

(
fw(x)

1− fw(x)

)
= w0 +

d∑
i=1

wixi

Training the model The log probability of each point
is

log

(
1

1 + exp(−y〈w, xi〉)

)
= − log(1 + exp(−y〈w, xi〉))

To train the model we minimize the total negative
log probability over all points, the logistic loss function
which is convex in w:

arg min
w∈Rd

1

n

n∑
i=1

log(1 + exp(−yi〈w, xi〉))

Advantages

• easy to fit: The algorithms are easy to implement
and fast.

• There are methods to train Logistic regression
models that take time linear in the number of
non-zero features in the data, which is the min-
imal possible time.

• easy to interpret, as their output represents the
log odd ratio between the positive and the nega-
tive class.

• extensions are possible

8 Decision Tree

The idea is to recursively split the data space into re-
gions that contain a single class only. A decision tree
is a flowchart like tree structure with a rootm internal
nodes (attributes), branches (outcome of a test) and
leaf nodes (class label). It is easy to interpret and re-
ally fast.

Classification perform test on the attributes of x at
the root and follow the branches that correspond to the
outcome of the test. This procedure is repeated until a
leaf node is reached. The label of x is the label of this
leaf node.

Construction Training Procedure

1. start with all training examples

2. select attribute and threshold that gives ”best”
split

3. create child node based on split

4. repeat step 2 and 3 on each child using its data
until a stopping criterion is fulfilled (e.g. all ex-
amples in the same class, number of examples in
node too small, tree too large)

Algorithm 4: Decision tree (D)

1 if Stopping Criterion fulfilled then
2 Predicted class for points in D is the majority

class in D
3 end
4 else
5 arg max(A,θ) = cost(D) - cost(DA,θ)
6 DA,<θ = {x ∈ D|A < θ}
7 DA,≥θ = {x ∈ D|A ≥ θ}
8 Create two child nodes of D, containing DA,<θ

and DA,≥θ
9 Decision Tree(DA,<θ)

10 Decision Tree(DA,≥θ)
11 end

5

Quantify the Information gain The Shannon en-
tropy of D is given by

Info(D) = −
m∑
i=1

p(y = yi|x ∈ D)·

log2(p(y = yi|x ∈ D))

Attribute A was used to split D into v subsets
{D1,D2, ...,Dv}, where Dj contains those tuples in D
that have outcome aj of A. How much more informa-
tion do we need to arrive at an exact classification?

InfoA(D) =

v∑
j=1

|Dj |
|D|

Info(Dj)

The information gain is the loss of entropy (increase in
information) that is caused by splitting with respect to
attribute A

Gain(A) = Info(D)− InfoA(D)

The information gain is biased towards attributes with
a large number of values. The gain ratio is based on the
split information

SplitInfoA(D) = −
v∑
j=1

|Dj |
|D|

log2(
|Dj |
|D|

)

GainRatio(A) =
Gain(A)

SplitInfoA(D)

In the Gain ratio the attribute with maximum gain ratio
is selected as the splitting attribute. The ratio becomes
unstable, as the split information approaches zero. A
constraint is added to ensure that the information gain
of the test selected is at least as great as the average
gain over all tests examined.

Gini index The Gini index measures class impurity as
Gini(D) = 1−

∑m
i=1 p(y = yi)

2. If we split via attribute
A into partitions {D1,D2, . . . ,Dv}, the Gini index of
this partitioning is defined as:

GiniA(D) =

v∑
j=1

|Dj |
|D|

Gini(Dj)

the reduction in impurity by a split on A is:

∆Gini(D) = Gini(D)− GiniA(D)

Advantages of Decision trees

• Simple, easy to interpret, white box model, can
be visualized

• little data preparation, can handle all kinds of
variables

• cost of using the tree is logarithmic in the number
of data points used to train the tree.

• can handle multi output problems, output can be
validated by statistical tests, performs well even
if assumptions are violated

Disadvantages of Decision trees

• over-complex trees that overfit data (use pruning
to overcome this) and biased trees if some classes
dominate (balance dataset)

• trees can be unstable because small variations in
the data might result in a completely di fferent
tree being generated

• learning an optimal decision tree is known to be
NP-complete under several aspects of optimality

• concepts that are hard to learn because decision
trees do not express them easily, such as XOR,
parity or multiplexer problems

Random Forests To minimize overfitting and the
large variability in decision trees, one may use an en-
semble of several decision trees.

9 Support Vector Machines

Hyperplane classifiers Given a hyperplane in some
dot product space 〈w, x〉+ b = 0 with w ∈ H, b ∈ R the
classifier is given by:

f(x) = sgn(〈w, x〉+ b)

the optimal hyperplane maximises margin of separa-
tion between any training point and the hyperplane.

max
w∈H,b∈R

min{‖x− xi‖

|x ∈ H, 〈w, x〉+ b = 0, i ∈ {1, ..., n}}

9.1 Hard-margin SVM

minw∈H,b∈R
1

2
‖w‖2

subject to yi(〈w, xi〉+ b) ≥ 1 ∀i ∈ {1, ..., n}

The size of the margin is 2
‖w‖ . The constraint

yi(〈w, xi〉 + b) ≥ 1 ensures that all training points of
the same class are in the same side outside of the mar-
gin.

9.2 Soft-margin SVM

C-SVM Points are now allowed to lie inside the mar-
gin or in the wrong halfspace (margin errors):

minw∈H,b∈R,ξ∈Rn

1

2
‖w‖2+C

n∑
i=1

ξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi
∀i ∈ {1, ..., n} : ξi ≥ 0

C ∈ R is a penalty score parameter that determines
the tradeoff between maximizing the margin and min-
imizing margin errors. ξ is is a slack variable, which
measures the degree of misclassification of each mar-
gin error. Can be extended such that the margin errors
in different classes are penalized differently (two pa-
rameters C+ and C− instead of one).

6

υ-SVM

minw∈H,b∈R,ρ∈R,ξ∈Rn

1

2
‖w‖2+(

1

n

n∑
i=1

ξi − υρ)

subject to yi(〈w, xi〉+ b) ≥ ρ− ξi
∀i ∈ {1, ..., n} : ξi ≥ 0, ρ ≥ 0

Is an alternative to C-SVM. υ ∈ (0, 1] can be shown to
be a lower bound for the fraction of support vectors
and an upper bound for the fraction of margin errors
among all training points.

9.3 Hard-margin SVM optimization

Optimizing using the Lagrangian we get

maximiseα∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyj〈xi, xj〉

∀i ∈ {1, ..., n}αi ≥ 0

Since we access the training data only in terms of the
inner product 〈xi, xj〉 we can plug in any inner product
from any space H. This is referred to as a kernel k:

k(xi, xj) = 〈xi, xj〉H

Kernels We assume that the data points x ∈ R are
mapped to a space H via mapping φ : R → H. The the
kernel is defined as an inner product 〈·, ·〉 : H×H → R
between two data points in H:

k(x, x′) = 〈φ(x), φ(x′)〉

The decision function for SVM classification becomes

f(x) = sgn(

n∑
i=1

yiαi〈φ(x), φ(x′)〉+ b)

= sgn(

n∑
i=1

yiαik(x, x′) + b)

The prediction effort is linear in the number of non-
zero entries of α, that is, in worst-case linear in O(n).
In practice, the number of support vectors is often much
smaller than n.

10 Kernel functions

In practical applications, one constructs kernels by

• Proposing a kernel function and explicitly defin-
ing the corresponding mapping φ or/and

• Combining known kernels in ways that obey the
closure properties of kernels.

It is crucial to know the closure properties of kernels:

1. given two kernels k1, k2 ⇒ k1 + k2 is a kernel

2. given two kernels k1, k2 ⇒ k1 · k2 is a kernel

3. given a kernel and a positive scalar k, λ ∈ R+ ⇒
λk is a kernel

4. if a kernel k is defined on a set, the zero-extension
k0 is also a kernel:

k0(x, x′) =

{
k(x, x′) if x, x′ ∈ D
0 otherwise

Kernel matrix the Gram or kernel Matrix of k is de-
fined as an n× n matrix K

Kij = k(xi, xj)

A matrix K is positive semi-definite, if for all ci ∈ R K
satisfies the following inequality:∑

i,j

cicjKi,j ≥ 0

If the Gram matrices K of the function k are all positive
semi-definite, then k is a semi-definite kernel function
or kernel.

10.1 Some famous and useful kernels

• linear kernel

k(x, x′) =

d∑
i=1

xix
′
i = x>x′

• polynomial kernel

k(x, x′) = (x>x′ + c)d c, d ∈ R

• Gaussian Radial Basis Function (RBF) kernel

k(x, x′) = exp

(
− 1

2σ2
‖x− x′‖2

)

• the constant ‘all-ones’ kernel

k(x, x′) = 1

• the delta (Dirac) kernel

k(x, x′) =

{
1 x = x′

0 otherwise

10.2 R-convolution kernels

A famous recipe for constructing kernels on structured
data. It is based on decomposing objects X and X ′ via
a relation R into sets of substructures S and S′. The
most widely used instance kR is the idea to compare all
pairs of these substructures (elements of a set, nodes of
a graph, substring of a string) of X and X ′ pairwise:

kR(X,X ′) =
∑

s∈S,s′∈S′
kbase(s, s

′)

kbase is an arbitrary vectorial kernel, very often the
delta kernel.

String kernels Use the spectrum kernel and kbase the
delta kernel to count all pairs of matching substrings in
two strings. One has to enumerate all substrings (using
suffix tree can be done in linear time O(|X|+|X|))

7

Random walk kernel Counts matching walks in G
and G′: the more matching walks there are, the higher
the similarity. Matching walks are sequences of nodes
and edges with matching node labels. An elegant (but
not necessarily very efficient) computation is the direct
product graph ofG andG′ and count all walks of length
k in it. Every walk in the product graph corresponds to
one walk in G and G′:

kx(G,G′) =

|Vx|∑
i,j=1

[∞∑
k=0

λkAkx

]
ij

= e>(1− λAx)−1e

Clustering
Given a set of objects, group them into clusters (classes
that are unknown beforehand). It allows us to discover
classes. Is is an instance of unsupervised learning (no
training set).

11 k-means Clustering

Partition the dataset into k clusters such that intra-
cluster variance is minimised:

V (D) =

k∑
i=1

∑
xj=Si

(xj − µi)2

where:

1. D The data set with all points xi.

2. V(D) is the variance which needs to be min-
imised.

3. Si is a cluster.

4. µi is the mean of cluster i. w

Algorithm 5: Lloyds’ algorithm

1 Partition data into k initial clusters (guess)
2 Compute the mean µ of each cluster
3 Assign each point to the cluster whose mean is

closest to the point
4 if any point changed its cluster membership then
5 repeat from step 2
6 end

Remark on Lloyds’ algorithm The algorithm is or-
der dependent and the results depend on initialisation.
Further the result may only be a local optimum.

Different implementations

1. Pairwise implementation

(a) If one point changes, recalculate cluster
(jump to point 2).

2. Stepwise implementation

(a) Recalculate every point first. Then jump to
point 2.

11.1 k-Medoid Clustering

Not the mean of each cluster is used but the medoid.
The medoid is the point closest to the mean.

mi = argminxj∈Si
‖xj − µi‖2

With this method one can optimise storage space. Less
points need to be stored because the medoids are al-
ready data points.

11.2 Kernel k-means

Move the problem to different feature spaces. Graph
and string data can be clustered. (Note: A Kernel is a
similarity measure (inner product in a Hilbert space).
It is not a distance)

Kernelising k-means

V (D) = ‖φ(~x1)− 1

m− 1

m∑
j=2

φ(~xj)‖2

= 〈φ(~x1)− ~µ, φ(~x1)− ~µ〉
= 〈φ(~x1), φ(~x1)〉+ 〈~µ, ~µ〉 − 〈φ(~x1), ~µ〉 − 〈~µ, φ(~x1)〉
= 〈φ(~x1), φ(~x1)〉+ 〈~µ, ~µ〉 − 2〈φ(~x1), ~µ〉

= κ(~x1, ~x1)− 2

m− 1

m∑
j=2

κ(~x1, ~xj)

+
1

(m− 1)2

m∑
i=2

m∑
j=2

κ(~xi, ~xj)

The symmetry of the innerproduct was used to compute
the result above.

Remark Kernel Def: A kernel needs to be a bilinear
function that satisfies symmetry and is positive definite.

1. k(x, y) = k(y, x)

2.
∑
i,k cicjk(xi, xj) ≥ 0

Which holds for every ci, cj ∈ and xi, xj in the domain
of the kernel. Every kernel k induces a distance d:

d(xi, xj)
2 = ‖φ(xj)− φ(xi)‖2

= κ(xi, xi)− 2κ(xi, xj) + κ(xj , xj)

11.3 k-means: Silhouette Coefficients

A silhouette coefficient s(x) relates the average dis-
tance between a point x and and all others points from
its cluster C, d(x, µC), to the average distance between
a point x and the other points from the second nearest
cluster C ′, d(x, µC′):

s(x) =
d(x, µC′)− d(x, µC)

max(d(x, µC), d(x, µC′))

12 Graph-based Clustering

A dataset D is given in terms of a graph G = (G, E). A
data object vi is a node in G. An edge eij from node vi
to vj has weight wij .

8

Graph-based clustering

1. Define a threshold θ

2. Remove all edges eij from G with weight wij > θ

3. Each connected component of the graph now cor-
responds to one cluster.

4. Two nodes are in the same connected component
if there is a path between them.

5. Graph components can be found by depth-first
search in a graph (O(|V |+|E|))

Graph-based clustering can suffer from the fact that one
noisy edge connects two clusters.

12.1 DBScan

Is short for Density-based Spatial Clustering of Applica-
tions with Noise. Two parameters have to be set MinPts
∈ N and ε. Two objects vi and vj belong th to same clus-
ter if their distance is smaller than ε and either vj or vi
is a core object. This alogrithm classifies the nodes of a
graph into 3 distinct objects.

1. p is a Core point iff:
|Nε(p)|≥ MinPts

2. p is a border point iff:
|Nε(p)|< MinPts and ∃q ∈ Nε(p) : |Nε(q)|≥
MinPts

3. p is a noise point iff:
p is neither a core point or a border point

The clusters are defined by iteratively checking the core
point property of a point p. The algorithm terminates
after it won’t find any new core points. DBScan is order
dependent. Checking the points in different order can
lead to different clustering results.

13 Spectral Clustering

Spectral Clustering connects graph-based clustering
with k-means.

13.1 Cut-based clustering

Objects are nodes in a graph G be a graph with nodes
V and edges E and the adjacency matrix W. Assume
V is partitioned into k subsets: V = {C1, ..., Ck}. Cut-
based clustering tries to minimize the total weight of
inter-cluster edges:

min
1

2

k∑
a=1

k∑
b=1

κ(Ca, Cb)

where κ(Ca, Cb) =
∑
vi∈Ca,vj∈Cb,a 6=bWij and

κ(Ca, Ca) = 0

Link to the graph Laplacian The degree matrix D is
defined as:

Dij =

{∑n
j=1Wij i = j

0 i 6= j

The (unnormalized) Graph Laplacian is defined as L =
D −W. Further, let ca be a vector of size n such that

ca(i) =

{
1 if vi ∈ Ca
0 if vi /∈ Ca

Note that 〈ca, ca〉 = ‖ca‖2= ‖Ca‖, the size of cluster
Ca. Further, note that if ca and cb are orthogonal,
〈ca, ca〉 = 0. It follows that finding the minimum k-cut
is identical to minimizing:

min
1

2

k∑
a=1

c>a Lca

13.2 Ratio Cut

Minimum k cut clustering is prone to finding very small
clusters. Ratio Cut accounts for this problem by divid-
ing the cut size by the size of the cluster:

min
C

k∑
a=1

1

|Ca|

k∑
b=1

κ(Ca, Cb) = min
C

k∑
a=1

c>a Lca
‖ca‖2

However, finding the optimal C, the binary cluster indi-
cator vectors ca for a ∈ {1, ..., k} is NP-hard. We allow
the vectors ca to take any real value, rather than being
binary. It follows that:

u>a Lua = u>a λaua = λa

where ua are Eigenvectors of L. This implies that in or-
der to minimize the Objective above, one should choose
the k smallest Eigenvalues of L and their corresponding
Eigenvectors. The Eigenvectors represent the relaxed
cluster indicator vectors (excluding un).

13.3 The Spectral Clustering algorithm

Spectral Clustering solves this problem pragmatically
by using the vectors ua as a new representation of the
data points and applying k-means to this new repre-
sentation after normalization. The new representation
is U = (un, un−1, ..., un−k+1), a n × k matrix. It is nor-
malized row-by-row to obtain the new k-dimensional
representation: Y = (y1, y2, ..., yn)> via:

yi =
1√∑k

j=1 u
2
i,n−j+1

(ui,n, ui,n−1, ..., ui,n−k+1)>

Algorithm 6: Spectral Clustering (D, k)

1 Compute the similarity matrixW ∈ Rn×n and the
Laplacian L = D −W

2 Solve Lua = λaua for a = n, ...n− k + 1, where
λn ≤ λn−1 ≤ ...λn−k+1

3 U := (un, un−1, ..., un−k+1)
4 Y := normalized rows of U via Equation for yi
5 C := {C1, ..., Ck} via k-means on Y
6 return: C

Computational Complexity The overall worst case
runtime isO(n3) due to the need to computer Eigenvec-
tors and Eigenvalues. For sparse graphs with m edges,
this runtime can be improved to O(mn). Running k-
means requires a runtime in O(tnk2), where t is the
number of iterations of k-means until convergence.

9

14 Soft-assignment Clustering

Soft k-means k-means is based on a hard assignment
of points to clusters. The core idea of Expectation Max-
imization (EM) Clustering with a Mixture of Gaussian
distributions is to work with the probabilities of each
point to belong to each cluster rather than a hard as-
signment.

14.1 EM Clustering

We are dealing with observed variables (objects X and
their features) and latent variables (the cluster mem-
bership of the objects Y), and model parameters θ
(parameters of the underlying probability distribution).
We would like to maximize p(X|θ). However, this is dif-
ficult as

log p(X|θ) = log

(∑
Y

p(X,Y |θ)

)

we have to sum over the latent variables inside the log-
arithm, which makes the evaluation of the maximum
likelihood extremely challenging. The EM algorithm
circumvents this problem in an iterative 2-step proce-
dure.
Given a joint distribution p(X,Y |θ) the goal is to maxi-
mize the likelihood function p(X|θ) with respect to θ:

1. Choose an initial setting for the parameters θold

2. Expectation step (E step): Evaluate p(Y |X, θold)

3. Maximization step (M step): Evaluate θnew given
by:

θnew = arg max
θ

Q(θ, θold)

where Q(θ, θold) =
∑
Y p(Y |X, θold) log p(X,Y |θ)

4. check for convergence of parameters or log like-
lihood. If not converged, then θold → θnew and
return to Step 2.

EM may converge to a local optimum.

Comparison to k-means

• k-means assigns each point to a cluster accord-
ing to the distance to the cluster means. Then the
cluster means are updated based on the examples
in this cluster.

• EM determines the probability that each example
belongs to each cluster. Then the cluster means
are updated based on a weighted sum over all
data points.

15 Hierarchical Clustering

What if clusters contain clusters themselves? Then we
need hierarchical clustering! Iteratively join the two
most similar clusters based on similarity between clus-
ters s(Ci, Cj):

• Single link: min
x∈Ci,x′∈Cj

d(x, x′)

• Average link: 1
|Ci||Cj |

∑
x∈Ci,x′∈Cj

d(x, x′)

• Complete link: max
x∈Ci,x′∈Cj

d(x, x′)

Algorithm 7: Hierarchical Clustering (D, s)
1 Initialize each point xi ∈ D as its own cluster Ci for

i ∈ {1, ..., n}
2 repeat
3 (i∗, j∗) = arg minijs(Ci, Cj)
4 Merge clusters Ci∗ and Cj∗
5 until |C|= 1;

Advantage Its clustering reflects the entire structure
of the dataset.

Disadvantage (1) It is difficult to make a clear state-
ment about cluster membership in hierarchical cluster-
ing, as each point belong to a hierarchy of clusters. (2)
Stopping Hierarchical Clustering early is an approach
to circumvent this cluster-assignment problem. These
criteria could be to stop the merging of clusters.

10

