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1 Models of Molecular Evolu-
tion

1.1 Substitution Rate Matrices

1.1.1 JC69

• All substitutions have the same rate λ

• 1 parameter

1.1.2 K80

• This model differentiates between transi-
tions (T-C/A-G) and transversions.

• 2 parameters

1.1.3 TN93

• Transitions between T/C happen with rate
α1 × π

• Transitions between A/G happen with rate
α2 × π

• Transversions happen with rate β× π

• 3 + 3 (πx) parameters

• If α1 = α2, the model is named HKY

1.1.4 GTR - Generalised Time Reversible

+ quite flexible

+ time-reversible

- not completely general

• 6 + 3 (πx) parameters

1.1.5 UNREST

• Unrestricted model

• Each substitution has a different rate

+ Most general model

+ Other models are special cases of UNREST

- Mathematically complicated to handle

- Not time-reversible

• 12 parameters
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1.2 Calculating Sequence Distance

1.2.1 Transition Probability Matrix

Using the substitution rate matrix Q we derive
the transition probability matrix P(t), which gives
the probabilities of nucleotide i changing to nu-
cleotide j in any time interval t.

P(t) = eQt

1.2.2 Stationary Distribution

• For t → ∞ we reach a stationary distribu-
tion; where the transition probabilities tend
towards their equilibrium frequencies.

• Any long sequence will thus be composed of
equal amounts of T,C,A and G at t → ∞ un-
der JC69.

1.3 Maximum Likelihood Estimators

Likelihood Function
Describes a hypersurface whose peak repre-
sents the combination of model parameter
values that maximize the probability of draw-
ing the obtained sample.

Maximum Likelihood Estimator
Is an estimator of a model parameter that
maximises the probability to obtain the ob-
served results.

Example: Estimate the probability that a die
shows side 6. → The die is thrown n = 100 times
and we obtained a 6 x = 40 times.

• Define probability of throwing a 6 x times
out of n tries→ Binomial-distribution, thus:
P = (n

x)px(1− p)n−x, where p is the proba-
bility of throwing a 6

• We use this probability as our likelihood
function and plug in the given values:
L(p; x) = (100

40 )p40(1− p)60

• To find the maximum likelihood we cal-
culate the first derivative of our likelihood
function and set L′ = 0 to find the maxi-
mum.

• Transformations are sometimes applied to
the likelihood function. e.g.: l(p; x) =
log(L(p; x))

• We estimate the probability by solving for p
and get p = 0.4 6= 1/6

1.3.1 Confidence Intervals

Interval which tries to capture the uncertainty of a
parameter estimate.

Confidence Interval
If a parameter is repeatedly estimated from
realisations of the random experiment and
the interval estimate for each realisation, we
expect 95 % of these intervals to contain the
true parameter.

Confidence intervals may be calculated on the
basis of likelihood intervals.
Let X be a random variable with a distribution
parametrised in θ. Based on collected data x of a
huge sample, the maximum likelihood estimation
for the parameter is θ̂. Then, 2(l(θ̂)− l(θ)) ∼ χ2

k

• Determine the value of the log likelihood
function in θ̂: l(θ̂; x)

• Calculate l(θ̂; x) − 0.5χ2
k,5%; subtract half of

the 5% most extreme values according to the
χ2-distribution

• Determine those θ values for which the the
following holds: l(θ; x) = l(θ̂; x)− 0.5χ2

k,5%

1.3.2 MLE for Sequence Distance

The MLE framework can be used to derive a max-
imum likelihood estimation for the sequence dis-
tance under a JC69 model. We have the transi-
tion probability matrix as seen in subsection (1.2.1)
with:

p0(t) =
1
4
+

3
4

e−4λt

p1(t) =
1
4
− 1

4
e−4λt
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For two sequences of length n with x differences
the probability that any one position is different is
p = 3p1(t). We define d = 3λt as the expected
distance in time t and get for the probability that x
out of n positions are different:

L(d; x) =
(

n
x

)
px(1− p)n−x =(

n
x

)(
3
4
− 3

4
e−

4
3 d
)x (1

4
+

3
4

e−
4
3 d
)n−x

• We compute l(d; x) = log(L(d; x))

• And calculate the first derivative and set it
to zero l′(d; x) = 0

Which gives us the MLE of the JC69 distance:

d̂ = −3
4

log
(

1− 4x
3n

)

1.3.3 Example of JC69 MLE

• Length of gene: n = 8

• Differences between the two sequences: x =
2

d̂ = −3
4

log
(

1− 4× 2
3× 8

)
= 0.3

Determine the 95% confidence interval for the
given parameters.

1.4 Variable Substitution Rates

• Not all sites evolve at the same rate

• Mutation rates may vary across sites

• The acting selection in the phenotypic level
exerts different evolutionary pressure on dif-
ferent sites

• Extend the existing models by replacing
the constant rate by a Γ-distributed random
variable

1.5 Codon Substitution Models

Nd : number of nonsynonymous differences
Sd : number of synonymous differences (taking
into account all possible ways from seq1 to seq2)
N : number of nonsynonymous sites
S : number of synonymous sites

• Use Nd
N and Sd

S as p-distances

• Calculate dN and dS with their respective p-
distance with respect to the chosen substitu-
tion model

• dN
dS

< 1 implies that nonsynonymous muta-
tions occur less frequently than synonymous
mutations (purifying selection)

• dN
dS

> 1 implies that nonsynonymous mu-
tations occur more frequently than synony-
mous mutations (positive selection)

2 Sequence Distance

t

3 Phylogenetic Inference

There are three phylogenetic approaches

• Phenetic approach
- Algoritmic approach (e.g. UPGMA algo-
rithm)
- Optimality approach (e.g. Least squares
methods)

• Cladistic approach
- Parsimony approach

• Mechanistic approach
- Maximum Likelihood approach

While phenetic approach give statistically consis-
tent result (true tree returned if infinite amount of
data available) cladistic approach is not.

3.1 Phenetic approach

3.1.1 UPGMA algorithm

• Output an ultrametric tree (all sequences
must be sampled at the same time)

• Assumes evolution according to a strict
molecular clock

• The distances from the UPGMA tree might
not be exactly the same as is the distance ma-
trix
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3.1.2 Least squares method

• Uses an optimality criterion

• Tries to lower the difference between the dis-
tance of two sequences from the tree and the
distance matrix

• Needs a tree topology to be proposed and
then give the optimal branch lengths given
the topology

3.2 Cladistic approach

3.2.1 Parsimony method

• Tries to lower the number of mutations

• Considers every possible unrooted tree
given sequences alignment and calculate the
parsimony score for each of them

• Output the unrooted tree with minimal par-
simony score

• Uses Fitch algorithm to speed up the process

• Statistically inconsistent (because of long
branch attraction in the Felsenstein zone)

4 Cladistic and ML Inference

MISSING CONTENT PP5-6; Here starts PP7

4.1 Searching Tree Space

To search the tree space for the maximum likeli-
hood tree we need to propose different trees for
evaluation.

• We propose different unrooted trees using
various defined moves to alter the tree

• We propose trees with different branch
lengths; thus we multiply each branch
length by some factor

→ We can then use ”hill-climbing” strategies to
find the ML tree

4.1.1 Modifying Unrooted Trees

• Nearest-Neighbour Interchange (NNI):
Swap two subtrees of opposing sides of one
branch.

• Suptree Pruning and Regrafting (SPR): Re-
move one random subtree and attach at a
random position of the tree.

• Branch swapping by tree bisection and re-
connection (TBR): Cut the tree into two and
reconnect at random by selecting branches
on both trees and connecting the subtrees be-
tween them.

4.2 Model Testing

Here we introduce methods for model selection
and assessing the confidence of our parameters.

4.2.1 Likelihood Ratio Testing

• Consider two models: H0 as a general model
parameterised in θ0 and H1 as a nested
model parameterised in θ1.

• Derive the likelihood function for both mod-
els and the maximum likelihood estimators
θ̂0 and θ̂1 for given dataset.

• Compute if 2(log L(θ̂1)− log L(θ̂0)) is in the
α tail of χ2

d f , then reject the null model H0

Likelihood Ratio Test
Is used to assess the goodness of fit of two
models based on the ratio of their likeli-
hoods. One model is found by maximiz-
ing the likelihood over the whole parame-
ter space while the other is evaluated under
some constraints. If the constraint (hypothe-
sis) is supported by the data the likelihoods
should not differ significantly.

4.2.2 Testing Non-Nested Models

Akaike Information Criterion (AIC): Used for
testing non-nested models:

AIC = −2 log Li(θ̂i) + 2pi

where pi is the number of parameters and Li the
likelihood function of model i.

• Calculate the AIC for each model

• Choose the model with the lowest AIC;
thereby minimizing the Kullback-Leibler
distance to the true model
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Rules of thumb for multiple model compar-
isons:

• AIC ≤ 1-2 + minimum → substantial sup-
port, should receive consideration in infer-
ence

• AIC ≤ 4-7 + minimum→ low support

• AIC ≥ 10 + minimum→ essentially no sup-
port

4.2.3 Confidence Intervals

Each parameter value which is not rejected based
on the likelihood ratio test at the 0.05 level is
within the 95% interval. → Use the strategy as in-
troduced before.

• Determine the value of the log likelihood
function in θ̂: l(θ̂; x)

• Calculate l(θ̂; x) − 0.5χ2
k,5%; subtract half of

the 5% most extreme values according to the
χ2-distribution

• Determine those θ values for which the the
following holds: l(θ; x) = l(θ̂; x)− 0.5χ2

k,5%

4.2.4 Bootstrapping

• Sample m sites at random with replacement

• Infer a phylogeny based on the new data

• Repeat this procedure many times

4.3 Overview of ML Inference

1. Infer a ML tree

• Felsenstein’s pruning algorithm for
each tree and branch length

• Choose the tree with branch lengths
that optimize the likelihood

• Do this for each substitution model and
calculate its AIC

2. Determine the substitution model and tree
with highest support using AIC

3. Determine the confidence interval for the
substitution model parameters based on the
likelihood ratios

4. Determine the confidence in your maximum
likelihood tree using bootstrapping

5 Comparative Methods

5.1 Comparing Discrete Characters

Example: We want to know whether eye and hair
color are correlated.

To test whether there is a true correlation we
perform Fisher’s exact test.
H0: Having brown eyes is equally likely among
red- and black-haired individuals.

hair/eyes brown blue
red 0 6
black 4 0

Evaluating the contingency table above yields
the following.

P(red/brown) =
(RBr in R)× (BlBr in Bl)

Br in All

=
(6

0)(
4
4)

(10
4 )

= 0.0048 < 0.05

Thus we reject the hypothesis of independent
character evolution on the 0.05 significance level,
indicating that there is a correlation.

Caveat: We should consider that there may be
a bias due to the relatedness of the individuals.
Fisher’s exact test assumes independence which
may not be given here.
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5.1.1 Reformulated Fisher’s Test

Thus we reformulate our problem: Is the change
of characters on the branches correlated?

H0,new: The character changes are equally
likely on every branch.

hair/eyes yes no
yes 1 0
no 0 17

This contingency table summarizes on how
many branches we have a change in either the
hair color, the eye color or both. Here we have
one branch with a change in both and 17 branches
with no change.

The probability for one branch on which both
the hair and eye color changes (E) is under H0,new:

P(E|H0,new) =
(1

1)(
17
0 )

(18
1 )

= 0.05555 > 0.05

Neglecting the phylogenetic background can
lead to false conclusions on correlations be-
tween characters, because of non-independence
of species data points as a result of shared ances-
try.

Here we do not consider differences in branch
length, but these are important as changes are
more likely to happen on longer branches.

5.2 Comparing Continuous Characters

We now switch our focus from discrete characters
(e.g. color) to continuous phenotypic characters
(e.g. height, weight, virulence).

5.2.1 Linear Regression on Phylogenies

We cannot use linear regression models two com-
pare two characters which evolved on a phy-
logeny as we cannot distinguish between correla-
tions and clade effects.

When characters evolve on a tree:

• ...they share common evolutionary history
and are not independent realisations

• ...the variance/error added by Brownian
motion is not equally distributed

Thus the prerequisites for linear regression
(see: Linear Regression) are not given.

5.2.2 Brownian Motion

Brownian motion is a Wiener process and thus fol-
lows four conditions:

• W0 = 0, the process start in 0

• Wt is almost surely continuous: P(Wt contin-
uous ) = 1

• Wt has independent increments (memory-
lessness): For 0 ≤ s1 ≤ t1 < s2 ≤ t2,
(Wt1 −Ws1) and (Wt2 −Ws2) are indepen-
dent

• For 0 ≤ s ≤ t, the Wt −Ws ∼ N(0, σ2(t− s))

There are analogies between models for evolu-
tion on discrete and continuous character space.

discrete continuous
probability
to visit any
state

probability
density on
state space

memory-
lessness due
to Markov-
chain model

memory-
lessness due
to Brownian
motion

transition
probabilities
scale with
time

variance
scales
with
branch
length
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Given a phylogeny we can apply a Brownian
motion model to evolve a continuous character.

Linear Regression
Determine dependency of a variable Y in an-
other variable X. We measure Y and X for n
independent realizations and fit a regression
model to the data. The observations need to
be:

• independent

• have the same (normally) distibuted er-
rors

Then we have the model:

yi = βxi + b + ε, where ε ∼ N(0, ε2)

This is fit using a least squares method
and the goodness of fit is estimated by R2. An
R2 of 1 indicates a perfect fit.

5.2.3 Constructing Independent Variables

One method to overcome interdependencies of the
evolutionary trait is the contrast method.
Suppose we have the following phylogeny with

four species; traits X j
1 and X j

2 are not independent
as they share the evolutionary lineages t6 and t7.

We now consider the contrasts of the charac-
ters instead of the characters. As these are inde-
pendent.

We now calculate the values of the indepen-
dent contrasts and their variances.

zj
(1,2) =xj

1xj
2

zj
(6,3) =xj

6xj
3

zj
(5,4) =xj

5xj
4

We assume character evolution according to
Brownian motion. And we consider that we ob-
serve tip values but have to estimate values of
internal nodes.

In order to calculate the variance we apply the
following formula.

Var[αX+ βY] = α2Var[X]+ β2Var[Y]+ 2αβCov[X, Y]

The branch length at cherries can easily be cal-
culated. The variance is proportional to the branch
length between the two external nodes.

Var[X j
1] = σ2(t1 + t6 + t5)

Var[X j
2] = σ2(t2 + t6 + t5)

Var[Zj
(1,2)] = Var[X j

1 − X j
2] =

Var[X j
1] + Var[X j

2]− 2Cov[X j
1, X j

2]

= σ2(t1 + t6 + t5 + t2+

t6 + t5 − 2(t6 + t5))

= σ2(t1 + t2)

Contrasts at Internal Nodes
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We want to calculate Z(i,l) = Xi − Xl and
Var[Z(i,l)] To calculate the values at the internal
nodes we have:

Xi =
tn

tm + tn
Xm +

tm

tm + tn
Xn

and the corresponding variances:

Var[Xi] = Var[
tn

tm + tn
Xm+

tm

tm + tn
Xn] =

σ2
(

tmtn

tm + tn
+ ti + tk + ...

)
Normalisation of Contrasts To make contrasts

comparable to each other they all need to have the
same variance. Thus we normalise all contrasts in
a last step.

Given the contrast Zj
(i,l) with variance

Var[Zj
i,l ] = σ2c

zj
(i,l)

we know that Var(αX) =

α2Var(X). Thus we can replace the contrasts by
the following.

Zj
(i,l),norm =

Zj
(i,l)√
c

zj
(i,l)

With Zj
(i,l),norm ∼ N(0, σ2), the contrasts may

now be used for linear regression analysis.

6 Phylodynamic Inference and
Birth Death Models

Phylodynamic trees encode past macroevolution-
ary dynamics.
We define the following terms.

• Molecular Evolution: Genetic makeup of
species changes through time

• Phylogenetics: Phylogeny displays the rela-
tionship between species

• Phylodynamics: Dynamics of population;
speciation and extinction processes

In epidemiology we these terms as follows.

• Evolution: Pathogen is evolving trough time

• Phylogenetics: The phylogeny display the
transmission history

• Phylodynamics: Transmission and becom-
ing non-infectious

In this context we look at the basic reproduc-
tive number R0, which is the average number of
secondary infections caused by a single infected
individual.

Applications: Phylogenetic modelling is used
outside its traditional realm.

• Immunology: B cells are the unit of evolu-
tion

– Phylogeny displays B cell differentia-
tion trough somatic hypermutation

– Population dynamics are represented
by the B cell generation and loss

• Cancer: Cells are the unit of evolution

– Phylogeny displays relationship of dif-
ferent cancer cells and healthy cells

– Population dynamics is represented by
the spread an loss of cell types

• Languages: Languages are the unit of evolu-
tion

– Phylogeny displays language evolution

– Population dynamics is the gain and
loss of languages

6.1 Phylodynamics

Population dynamics models the birth and death
of individuals (species, infected hosts, B cells, can-
cer cells and languages). Phylodynamics aims to
understand and quantify the population dynam-
ics based on a phylogenetic tree.

6.1.1 Population Dynamic Models

We look at a linear birth-death process which
models the reproduction and death of individuals
with the following simple model.
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• β: The rate of birth of new individuals per
individual in I

• δ: The rate of death per individual in I

Thus if we consider the fate of one individual
we see that.

• The probability of giving birth to another in-
dividual in a very small time step ∆t is β∆t.

• The probability of dying in a very small time
step ∆t is δ∆t

• The waiting time to the first birth or death
event is exponentially distributed with pa-
rameter β + δ, as the minimum of two expo-
nentially distributed random variables with
rates r1, r2 is exponentially distributed with
rate (r1 + r2).

Thus if we consider the waiting time of N indi-
viduals we find that.

• The waiting time of the first event is expo-
nentially distributed with parameter N(β +
δ)

The following diagram illustrates the full pop-
ulation dynamics of a birth-death process which
starts with one individual and is stopped after
time T.

6.2 Phylodynamic Models

A phylodynamic model adds a sampling process
of individuals to the population dynamics. In a
simple model we have the following.

• Birth rate β

• Death rate δ

• Process duration T

• Extant tip sampling probability ρ

• Extinct tip sampling probability φ

If we assume ρ = 1, φ = 0 in the context of
macro-evolution that means that we do not sam-
ple from fossils but only from extant (species still
living today) species. The subtree of the com-
plete population tree connecting the sampled in-
dividuals and ignoring parent-children labels, is
called the phylogenetic tree. This is displayed in
the lower part of the following figure, where the
parent-child information is removed and only ex-
tant species are shown.

We introduce the lineage through time (LTT)
plot here, it indicates the number of surviving lin-
eages trough time. The dashed blue line is the LTT
plot of the complete tree and includes population
size through time while the red line only shows
the number of surviving lineages.

LTT plots provide a method of estimating pa-
rameters of birt death models. The following plot
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shows a large number of realization of a birth-
death model simulation. The simulation was run
with T = 50, β > δ. If β < δ the population
would decrease on average and most trees would
rapidly go extinct. We plot the average over all
LTT for the phylogenetic trees (red), the average
over all LTT plots for the complete trees (blue) and
the average total population size over all realiza-
tions (complete and extinct trees) (black).

At the start of the complete LTT plot we see an
increased slope, this effect is called ”push-of-the-
past”; the increased slope at the end of the phylo-
genetic LTT plot is called ”pull-of-the-present”.

• Average Total Population Size: The aver-
age total population size through time has
the constant slope β− δ on the log scale, cor-
responding to the average total population
size of e(β−δ)t at time t.

• Complete LTT Plot: The complete LTT plot
goes through a period of accelerated growth

at the beginning of the process, before grow-
ing exponentially at rate β− δ. This may be
explained by the fact that the complete LTT
plot only includes populations that survive
to the present. Thus we expect populations
that grow slowly at the start to be less likely
to survive to the end of the process and are
thus not included in the complete LTT plot
(push-to-the-past).

• Phylogenetic LTT Plot The phylogenetic
LTT plot grows exponentially with rate β− δ
until the present when the growth acceler-
ates to exponential growth with rate β. This
may be explained by the fact that lineages
appearing close to the end of the process
have not enough time to go extinct and are
thus more likely to be sampled.

6.2.1 Parameter Estimation with LTT

The following figure indicates how the paramters
β and δ can be determined from the phylogenetic
LTT plot. The stars indicate a branching event at
time t with the number of lineages after the event
on the y-axis. We fit a line to the initial slope and
find β− δ and to the recent slope to find β.

However estimating parameters of the birth-
death model in this manner is problematic.

• The variance in the timing of the next
branching event (next star) decreases with
increasing population size. Thus a classic
linear regression assuming the same vari-
ance for each data point (homoscedasticity)
is not valid.

• The time transition between the two phases
of the curve is unclear. This poses the dif-
ficulty of deciding where to place the cutoff
between the first and second regression line.

6.2.2 Probability Density of a Tree

We recall that in phylogenetics we calculate the
phylogenetic tree by evaluating the following like-
lihood function.

L(T, Q; D) = P(D|T, Q)

Where T is the phylogenetic tree, Q is the
substitution rate matrix and D is the sequence
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alignement.

In phylodynamics we want to compute the
phylodynamic likelihood which is defined as fol-
lows.

L(η = (β, δ, T, ρ, ψ, r); T) = P(T|η)

Where T is the phylogenetic tree and η sum-
marizes the birth-death parameters.

We use a maximum likelihood approach with
assumption of complete extant sampling (no fossil
sampling), thus we have ρ = 1, ψ = 0. We start
by deriving the likelihood of a single individual
to leave 0 or 1 offspring after time t.

The probability that no surviving individuals
remain after time t if we start with one individual
is abbreviated as p(0|t). We consider very small
timesteps (∆t) during which only one event oc-
curs. During this timestep for a single individual
a death event happens with probability δ∆t and
a birth event happens with probability β∆t. With
probability 1− (β + δ)∆t no event occurs. We de-
rive the differential equation for p(0|t) below.

p(0|t + ∆t) =

(1− (β + δ)∆t)p(0|t)︸ ︷︷ ︸
No event

+ δ∆t︸︷︷︸
Death event

+ β∆tp(0|t)2︸ ︷︷ ︸
Birth event

The events are derived as follows.

• No event: We have probability 1 −
P(Any event happens in time ∆t) that no
event occurs in the time step [0, ∆t], to de-
rive the probability that we have extinction
we multiply with the probability of one in-
dividual dying out (p(0|t)).

• Birth: We have the probability β∆t that a
birth happens times the probability that both
these individuals die out (p(0|t)2).

• Death We have the probability δ∆t for a
death event, in this case the probability for
extinction is one as no individual remains.

We rearrange the equation and get.

p(0|t + ∆t)− p(0|t)
∆t

=

−(β + δ)p(0|t) + δ + βp(0|t)2

When we take the limit ∆t → 0, the following
remains.

d
dt

p(0|t) = −(β + δ)p(0|t) + δ + βp(0|t)2

With the initial condition of p(0|0) = 0 we
solve the differential equation to get this.

p(0|t) = δ(1− e−(β−δ)t)

β− δe−(β−δ)t

We extend the equation to the probability of n
surviving lineages after time t and get the follow-
ing after [Kendall et al., 1948].

p(1|t) = e−(−β−δ)t(1− p(0|t))2

p(n|t) = p(1|t)
(

β

δ
p(0|t)

)n−1
, for n ≥ 2

Proof

We prove the equation for p(1|t) and write the
following.

d
dt

p(1|t) = −(β + δ)p(1|t) + 2βp(1|t)p(0|t)

The factor of two accounts for either one of the
descendants of the birth event leading to a surviv-
ing individual at time t. We evaluate both sides of
the equation using p(1|t) = e−(β−δ)t(1− p(0|t))2,
thus showing that this function is a solution to the
differential equation.

Solving the equation then leads to the follow-
ing expression.

p(1|t) = (1− p(0|t))(1− β

δ
p(0|t))

11



6.2.3 Expansion of the Model to a Tree

We assume that the time in this model is mea-
sured as age relative to the present, thus t = 0 is
the present. We spilt the calculation into multiple
sub-problems using dynamic programming. So let
p(x0, x1) be the probability density for a branch
of length x0 − x1 extending from an individual at
time x0 in the past. Then, the probability density
of a tree T with age x0 is the following.

p(T|x0) = p(x0, x1)︸ ︷︷ ︸
P(Initial branch)

β︸︷︷︸
Branching rate

p(Ta|x1)p(Tb|x1)︸ ︷︷ ︸
P(Subtrees)

With p(T|x) = p(T|ρ = (β, δ, T = x))

If we calculate the probability p(t, x1) density
of the branch between t and x1 we get.

p(t + ∆t, x1) =

(1− (β + δ)∆t)p(t, x1) + 2β∆tp(t, x1)p(0|t)

This leads to the following differential equa-
tion.

d
dt

p(t, x1) = −(β + δ)p(t, x1) + 2βp(t, x1)p(0|t)

Which is the same differential equation as for
p(1|t), but the initial condition differs. Here we
have p(x1, x1) = 1. Thus for the solution we get.

p(x0, x1) = p(1|x0)/p(1|x1)

For a tree of n present day tips, age of the
process X0 and branching times x1, x2, ..., xn−1 we
have the following probability density.

p(T|x0) = p(x0, x1)βp(Ta|x1)p(Tb|x1) =

βn−1
n−1

∏
i=0

p(1|xi)

An analogous strategy provides us with a tree
probability density when ρ < 1 (indicating in-
complete extant sampling) and φ > 0 (sampling
through time).

7 Coalescent Models

While birth-death models allow the population
size to vary stochastically, coalescent models in-
stead treat the population size as a given. Thus
the population size itself becomes a target of the
inference.
A common assumption is that the underlying pop-
ulation dynamics are deterministic.

7.1 Wright-Fisher Process

Is a model for the propagation of traits in a popu-
lation of fixed size. It includes discrete generations
where each generation consists of N individuals.

• Each individual in the offspring population
chooses its parent uniformly at random from
the N parents.

• Thus a given parent has a binomially-
distributed number of offspring.

• For phylogenies of a particular gene, ploidy
can be taken into account by multiplying N
by a factor which accounts for the number
of copies of gene present in each individual.
(e.g. for a diploid organism the number of
gene copies is 2N)

• The model assumes distinct non-
overlapping generations and each member
of a given generation has exactly one parent
in the previous generation.

• What these elements represent depends on
the system of study; they might be genes or
asexual organisms.

• The selection of the parent is completely ran-
dom; the Wright-Fisher process is therefore
neutral as fitness values are not considered.

We want to determine the probability that the
most recent common ancestor (MRCA) of two
samples occurred at m generations before the
present.

We consider the following.
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• Since the parent of each individual is ran-
domly picked, the probability that two in-
dividuals in the same generation have the
same parent is 1

N .

• Thus the probability that two individuals
in the same generation do not have a com-
mon ancestor in the previous generation is(

1− 1
N

)
.

The probability that two sampled individuals
first share a common ancestor in the mth genera-
tion before the present is the following.

PMRCA(m) =

(
1− 1

N

)m−1

︸ ︷︷ ︸
No common ancestor in

m−1 generations

1
N︸︷︷︸

Common ancestor in the
mth generation

This results in a success probability of 1/N.
Since the mean of such a distribution is the inverse
of the success probability we must wait on average
N generations to see a common ancestor of two
samples from a population of size N.

7.1.1 Coalescent in Calendar Time

If m is the number of generations let g be the cal-
endar time of a generation (e.g. 5 days). Therefore
we we have the following for the calendar time
span of m generations.

∆t = gm

In calendar time the probability density func-
tion for the coalescence of two lineages is the fol-
lowing

pd f (N, ∆t) =
1

gN
e−

∆t
gN

For large N the time limit of the coalescence is
exponentially distributed with mean gN.

If the number of samples k is much smaller
than the population size N we have the following
probability for a coalesence between any of the (k

2)
pairs.

pcoal ≈
(

k
2

)
1
N

7.2 Kingman’s Coalescent

Is a continuous-time Markov chain which pro-
duces time-trees. The process runs backwards in
time by successive merging of events known as
”coalesence”.

If N � k then it will produce the same tree as
the Wright-Fisher model.

The times between coalesence events are
drawn from an exponential distribution with rate
parameters (k

2)
1

Ng .

P(∆t|N, g, k) = exp
(
−∆t

(
k
2

)
1

Ng

)(
k
2

)
1

Ng

We derive the average time for n lineages to
coalesce into one.

E[troot] = Ng
n

∑
k=2

1

(N
2 )

Thus the mean time until all coalescent events
happen is the sum over all probabilities in the tree.

Coming from the previous equation we write
the following.

n

∑
k=2

1

(k
2)

=
n

∑
k=2

2
k(k− 1)

We can expand the term 2
k(k−1) to 2

k−1 −
2
k and

get.

n

∑
k=2

1

(k
2)

=
n−1

∑
k=1

2
k
−

n

∑
k=2

2
k
= 2(1− 1

n
)

Therefore we find that E[troot] → 2Ng as the
number of lineages n. (i.e. number of leaves in the
coalescent tree) becomes large. This is an upper
bound on the expectation, while individual coa-
lescent trees can be older than this.

The Probability of a Coalescent Tree
We calculate the probability of the following

coalescent tree.
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P(T|Ng) =

Nothing happens
in ∆ti︷ ︸︸ ︷

exp(−∆t1

(
4
2

)
1

Ng
)×

Probability of particular
coalescent event︷︸︸︷

1
Ng

×

exp(−∆t2

(
3
2

)
1

Ng
)× 1

Ng
×

exp(−∆t3

(
2
2

)
1

Ng
)× 1

Ng
=

n−1

∏
i=1

exp
(
−∆ti

(
ki
2

)
1

Ng

)
1

Ng

• If we take a real tree (inferred from genetic
data sampled from a real biological popu-
lation) and infer population size the result
might be biased sine the real dynamics dif-
fer from Wright-Fisher dynamics

• Real populations are structured while
Wright-Fisher populations are completely
homogeneous.

• The coalescent process is often derived as a
limit of the Wright-Fisher process as done

here and appears as the limit of many other
population processes. → Thus the coales-
cent is believed to be fairly robust.

General Assumption of the Coalescent

1. Samples are members of a population that is
at demographic equilibrium, which justifies
the use of fixed or slowly varying population
sizes.

2. Small sample number compared to the total
population size, which justifies the neglec-
tion of more than two lineages coalescing at
the same time.

3. Populations are ”well-mixed”, thus samples
are drawn uniformly at random, which jus-
tifies the coalescent rate between any pair of
sampled lineages being equal. Population
structure violates this assumption.

Extension of Population Size Changes

P(T|N(t)) is calculated via the rate of coales-
cence 1

N(t) , where N(t) is the population size as a
function of time t. For large population sizes we
have a slower coalescence rate.

Under a Wright-Fisher model with varying
population size the probability of a sampled tree
becomes.

P(T|N(t)) =
n−1

∏
i=1

exp
(
−
∫ ti+1

ti

(
ki
2

)
dt

N(t)g

)
1

Ng

For a given parametric form e.g. N(t) =
N0 exp(−γt) the model yields the likelihood for
the given demographic model parameters. This
allows us to directly test different demographic
scenarios for a given tree.

Non-parametric Population Dynamics
We assume that the population has distinct con-
stant sizes in each interval between coalescent
events. We can obtain a separate maximum like-
lihood estimate for each population size.

7.3 Coalescent Approximation of
Birth-Death Models

We can develop coalescent distributions that ap-
proximate the probability density of sampled phy-
logenies generated by birth-death processes.

We assume that the ODE approximation
I(t) = I(T) exp((β − δ)(T − t)) holds. Birth
events occur at time t with the rate βI(t) where I
is the number of individuals. Every birth is a po-
tential coalesence between sampled lineages and
the probability of choosing a sampled lineage pair
is (k

2)/(
I(t)

2 ) and the approximate coalesence rate

is βI(t) k(k−1)
I(t)(I(t)−1) ≈ (k

2)
2β
I(t) .

The quality of the approximation heavily de-
pends on how well birth-death population dy-
namics are approximated by the deterministic
ODE solution. The approximation can perform
very poorly if the population size is small, as it is
always the case when an epidemic starts.
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7.4 Comparing Birth-death models to
Coalescent Models

These models are used to probabilistically relate a
populations demography to its phylogenetic his-
tory. Both allow for inference of demographic and
epidemiological parameters but may differ in their
parametrization.

Birth-death Models
Advantages Disadvantages
Accounts for
stochastic
variability in
population
dynamics

Sensitive to
unmodeled
changes in
sampling
fractions

Easier
interpretation of
parameters

Difficult to
extend to
complex
population
models

Uses sampling
information

Coalescent Models

Advantages Disadvantages

Fast likelihood
calculations

Sensitive to
uncertainty in
population
dynamics at
high sampling

Easy to extend
to complex
population
dynamics

Sensitive to
hidden
population
structure and
nonrandom
sampling

Accounts
naturally for
incomplete
sampling

8 Bayesian Inference

There are two main approaches to statistics, the
frequentist approach and the Bayesian approach.
In a frequentist view we see probabilities as rela-
tive frequencies of outcomes of repeatable random
experiments (e.g. dice roll). Thus probabilities are
only assignable to repeatable experiments and
they are treated as an intrinsic property of the sys-
tem. Furthermore, under this view the inference
of model parameters is treated as fundamentally
different from the prediction of outcomes.

The Bayesian approach on the other hand sees
probabilities as plausibilities of propositions con-
ditional on available information. Under this view
probabilities are assignable to any unambiguous
proposition and they represent a lack of informa-

tion to predict the outcome with certainty. Here
the inference of model parameters is treated in the
same way as the prediction of outcomes.

8.1 Inference of Genetic Distances

We have a Jukes-Cantor model for the likelihood
of the alignment with S = 4 substitutions given
the total number of sites L = 10 and the distance
d.

P[S|d, L] =
[

1
4
+

3
4

exp
(
−4

3
d
)]L−S

×
[

1
4
− 1

4
exp

(
−4

3
d
)]S

Thus under our model we can say that the
number of segregating sites follows the likelihood
P(S|d, L, M). Under a Bayesian viewpoint we can
talk about the probability of a certain distance d
given the substitutions, the length and the model,
thus we have P(d|S, L, M). To find P(d|S, L, M) we
use Bayes rule.

P(d|S, L, M) =
P(S|d, L, M)P(d|L, M)

P(S|L, M)

Where P(d|L, M) quantifies knowledge of d in
the absence of the observation S. P(S|L, M) is the
distribution over possible number of segregating
sites S given the JC69 model and any independent
d.
Here we assume that our prior information is 0 ≤
d ≤ 3.
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{
1
3 , if 0 ≤ d ≤ 3
0, otherwise

This yields a probability distribution with
Lmax = 0.7.

If new data is acquired we can update this esti-
mate using Bayes. We have a new alignment with
(L′ = 90, S′ = 48). Thus we update our estimate
by using the previously calculated posterior as
our new prior.

This is equivalent to inferring d from both
data sets simultaneously.

Credible Intervals
The 95 % credible interval is an interval of the
posterior distribution containing 95 % of the
probability. We ignore the 2.5 % of the sample
on both sides. The interval is often chosen,
such that it has the smallest size, this is called
the highest posterior density (HPD).

• The 95% HPD can also be found by
lowering a threshold density under the
curve where the density exceeds the 95
% threshold.

• The interval can be interpreted as
the probability of an unknown value
falling into this region is 95 % given
the data.

• This is different from a 95 % confidence
interval which is the truth-containing
interval 95% of the time when averag-
ing over all possible data sets.

8.2 Difficulties of Bayesian Inference

Bayes’ Law is given by the following formula.

P(θ|D, M) =
P(D|θ, M)P(θ|M)

P(D|M)

In practice it is often difficult to determine the
denominator P(D|M) of this equation, this term
can be seen as a normalizing constant for the pos-
terior distribution.

P(D|M) =
∫

P(D|θ, M)P(θ|M)dθ

This integral is often not numerically solvable
if θ has many dimensions, which is true for most
phylogenetic and phylodynamic problems.

Thus we use Monte Carlo methods.

• Algorithms which produce random samples
of values in order to characterize a probabil-
ity distribution.

• Markov Chain Monte Carlo is an example of
such an approach which is used very often
for phylogenetic and phylodynamic prob-
lems.

→ See the excellent article on Wikipedia.
https://en.wikipedia.org/wiki/

Metropolis-Hastings_algorithm

In Bayesian phylogenetics, we take samples
from the posterior distribution in order to charac-
terize the probability distribution of the tree T.

The MCMC algorithm relies on the use of ap-
propriate proposal distributions that allow the
Markov chain to probe the parameter space effi-
ciently.

Here we want to calculate the probability of a
given tree τ, the substitution model parameters Q
and η which are the parameters of our phylody-
namic model.

P(τ, Q, η|A) =
1

P(A)
P(A|τ, Q)P(τ|η)P(Q, η)

P(τ|η) is the prior of our tree and P(Q, η) =
P(Q)P(η) are the parameter prior distributions.
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This Bayesian approach has the following
characteristics.

• Joint inference of the phylogenetic tree, the
substitution model parameters and the phy-
lodynamic model parameters.

• Accounts for uncertainty in the tree and in
the model parameters.

• It allows us to include additional sources of
information such as constraints on the tree
topology.

• The resulting posterior distribution natu-
rally includes the uncertainty.

Here we assume that sequence evolution is
neutral due to way we factorized the joint prob-
ability for the tree and the model parameters (Tree
generation is separate from sequence evolution).

The MCMC algorithm proposes new state
τ′, θ′, η′ based on state τ′, θ′, η′ and evaluates the
numerator of Bayes formula. Here the new tree is
proposed using tree-space proposal distributions.
The other parameters are scalars and can be pro-
posed via random scaling, random walks, etc.

→Acceptance/Rejection of the new state leads
to a set of the accepted states which is s sample
from the posterior distribution P(τ, Q, η|D).

8.2.1 Tree Space Proposal Distributions

We want get a proposal distribution from the
whole space of rooted time trees. Thus to get
the proposal distribution qi(τ

′|τ) we generate new
random trees using the following methods.

• Wilson-Balding: A branch swapping move
proposed by WILSON and BALDING 1998
which involves removing a subtree and re-
attaching it on a new parent branch

• Subtree Exchange: Two subtrees are ran-
domly swapped.

• Uniform Node Height: Randomly selects
true internal tree node (i.e. not the root) and
move node height uniformly in interval re-
stricted by the nodes parent and children.

• Tree Scaling: Scale the branch length of a
tree proportionately. CONFIRM

9 Phylodynamic Applications

9.1 Structured Populations

Populations often have some internal structure
such as geographical separation between parts of

the population.

Population Structure
A population is structured if its members pos-
sess one or more traits (e.g. location, group
membership, etc.) that affects their phylody-
namic parameters such as birth rate, death
rate, sampling rate or coalescence rate.

Spatial/Geographic Structuring
Gene flow between subpopulations can be lim-

ited due to geographic separation. How strongly
this impacts phylodynamic parameters depends
on the rate of migration (relative to the local birth
rate) between subpopulations.

Non-spatial Structuring
Spatially mixed populations can be mixed, this

is often the case in pathogen populations which
are composed of within-host sub-populations.
Some sub-populations may show traits such as
drug resistance which have a strong influence on
the reproductive success.

Individuals of the population may be in dif-
ferent epidemiological states (e.g. exposed vs
infectious).

Sampled animals may even be members of
different species, between which there has been
horizontal gene transfer, although this is very rare.

Population structure can be an important fac-
tor in shaping the phylogenetic relationships be-
tween samples.
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→ Here the coalesence rate within the demes
(a local group of individuals, i.e. from the same
taxon, that interbreed with each other and share
a gene pool) is much higher than in between the
demes.

If one fails to account for such structure there
is a risk that the results will be biased. We can use
structure aware phylodynamic models to account
for such biases.

Incorporating structure into phylodynamic
models also allows us to directly address ques-
tions relating to population structure. We can con-
sider questions regarding the migration rate be-
tween islands or find information regarding the
sizes of sub-populations. Even questions about
when a disease entered a geographic location can
be answered.

Example
Consider a population of individuals of which

some are sensitive to some drug and others are
not. When sampling from the population we do

not know about the history of the lineages but
only about their current resistance status. Thus
if we reconstruct the tree, the history of how the
resistance was transmitted will be missing. How-
ever if we find many clustered leaves then it is
very likely that the drug resistance was transmit-
ted; if the resistance occurred de-novo many times
then drug-resistant and drug-sensitive tips will be
mixed.

9.2 Structured Birth-Death Models

We extend the birth-death model to include indi-
viduals of different types and transitions between
them.

10 Phylogenetic Networks
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