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1 Graph Theory

1.1 Adjacency Matrix

For a graph of n nodes the adjacency ma-
trix has size n × n, non-zero entries of
the matrix represent the connections be-
tween two neighboring nodes.

Example
The adjacency matrix of the sample
graph in upper triangular form is
given by:.

− A B C D E F G
A 0 1 1 1 1 1 1
B 0 0 0 0 0 0 0
C 0 0 0 1 0 0 0
D 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0
F 0 0 0 0 0 0 1
G 0 0 0 0 0 0 0



1.2 Degree Distribution

The degree distribution represents the
number of nodes with a given degree
(number of direct neighbours). The av-
erage degree is a metric for the connect-
edness of the whole graph.

d =
∑n

i=1 di

n

The degree distribution is also used to
find the graph family (e.g. scale-free,
random, small world) of a given net-
work.
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Example
The following table gives the de-
grees for each node in the graph
above.

P1 1 P9 2
P2 2 P10 2
P3 1 P11 2
P4 1 P12 3
P5 1 P13 1
P6 5 P14 3
P7 1 P15 1
P8 4 P16 2

Counting the frequency of each de-
gree gives the following table.

Degree Frequency
1 7
2 5
3 2
4 1
5 1

Plotting Degree-Frequency gives
the following plot.

This indicates that the network is
scale-free; if the network was ran-
dom the distibution would be Pois-
son.

1.3 Clustering Coefficient

The clustering coefficient is a measure
for how connected with each other
neighbours of a particular node are.

C =
2e

ku(ku − 1)

Where e is the number of edges inbe-
tween neighbours and ku is the number
of neighbours.

Example
For the network given in subsection
(1.1) we get the following:

C =
2e

ku(ku − 1)
=

2× 2
6× (6− 1)

=
2

15

The network global clustering coefficient
if given by the following equation.

C̄ =
1
n

n

∑
i=1

Ci

1.4 Cliques

A clique is a subset of nodes such that
every two nodes of that subset are con-
nected. Thus this subsets of nodes repre-
sents a complete graph.
A maximal clique is one that cannot be
extended, as no other neighbours of any
node are connected to every node of the
clique.

A maximum clique is the largest clique
within a given network.

1.5 K-Cores

The k-core if a graph G is the maximal
subgraph H ⊆ G such that δ(H) ≥ k, in-
dicating that every node of H has at least
k neighbours. Thus the 0-core includes
all nodes and the 1-core includes all but
isolated nodes.
General Procedure

For every k until the graph is an empty set

Until no more nodes are removed

Remove all nodes with deg(N) <= k;

these nodes belong to the k-core

Example
The k-cores for the following graph
are determined by removing all
edges with degree deg(N) = 1 in a
first step. This is only node F, thus F
is removed and labeled with core 1.
Now all nodes with deg(N) ≤ 2 are
removed: {G, H, E}. The remain-
ing nodes now also only have two
neighbours each, all edges are re-
moved and the remaining nodes are
part of the 2-core.
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2 Probabilistic Graphical
Models

2.1 Metropolis Hastings

2.1.1 A Markovian Tale

“We are employed as a contractor for a
mining company to map the amount of
subterranean iron across a vast, lifeless
desert. The desert is flat and uninfor-
mative of the treasures that lie under-
neath. However, fortunately, we have
a machine that measures the magnetic
field directly underneath, which varies
in direct proportion to the total amount
of iron below. Suppose that the mining
company has already determined that
the area is rich with iron deposits and is
interested only in mapping the relative
abundance of deposits over the desert.
How should we approach mapping the
underground iron? The simplest way
would be to survey the magnetic field

at, say, 1km intervals. However, even at
this modest resolution, we would need
to sample 1000 1000 = 1million points.
If instead we increased the precision to
100 metres, we would then need to take
100 million samples. We’d die of thirst!
There must be a quicker way to build an
accurate map. Suppose that we start in a
random location in the desert and mea-
sure the magnetic field beneath. We then
use a random sample from a bivariate
normal distribution centred on our cur-
rent location, to pick a new location to
sample. We then measure the magnetic
field there, and if it exceeds the value at
the old site, we move to the new location
and add the new (north, east) location to
our list. By contrast, if the value of the
magnetic field is lower than the current
value, then we only move there proba-
bilistically, with a probability given by
the ratio of the new value to the old.
To do this we compare the ratio with a
random sample from a uniform distri-
bution, p U(0,1). If our ratio exceeds
p, then we move there and add the new
(north, east) to our current list. If it does
not, then we move back to where we
were, and add our previous location to
our list again.”

Excerpt From: Ben Lambert. “A Stu-
dent’s Guide to Bayesian Statistics”

2.1.2 Motivating Metropolis Hastings

Suppose we want to sample from a dis-
tribution which follows a known func-
tion p(x), but for this function we can-
not obtain the corresponding probability
density function. The probability den-
sity function has the following property.

∫ ∞

−∞
f (x)dx = 1

For simple function the normalizing con-
stant is easy to obtain. Suppose we have
the following function.

p(x) = e−x2/2, x ∈ (−∞, ∞)

This yields:

∫ ∞

−∞
p(x) dx =

∫ ∞

−∞
e−x2/2 dx =

√
2π

So we normalize our function in the fol-
lowing manner.

∫ ∞

−∞
ϕ(x) dx =

∫ ∞

−∞

1√
2π

e−x2/2 dx = 1

So for this simple example we found the
normalizing factor to be

√
2π. But for

complicated functions it can be very dif-
ficult to find the normalizing constant
and therefore the corresponding proba-
bility density function.
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2.2 Conditional Probabilities

Conditional probability is a measure of
the probability of an event occurring
given that another event has occurred.

P(A|B) = P(A ∩ B)
P(B)

These probabilities are found by consid-
ering the probability tables.

2.3 Conditional Independence

Two random events A and B are condi-
tionally independent given a third event
C precisely if the occurrence of A and the
occurrence of B are independent events
in their given C.
X is conditionally independent from Y
given Z (X⊥Y|Z) if the following holds.

P(X, Y|Z) = P(X|Z)P(Y|Z)

where we can use the following equality
according to the conditional probability:

P(X, Y|Z) = P(X ∩Y ∩ Z)
P(Z)

This also works for unconditioned prob-
abilities, if the following holds X and Y
are independent.

P(X ∩Y) = P(X)P(Y)

2.4 Law of Total Probability

P(A) = ∑
n

P(A ∩ Bn ∩ Cn ∩ ...)

3 Stoichiometric Network-
Analysis

3.1 Stoichiometric Matrix

The stoichiometric matrix (N) has di-
mension n (number of internal metabo-
lites) x q (number of metabolic reactions)

Example
The following matrix gives the sto-
ichiometric matrix to the network
above. The corresponding matrix is:


− Ra Rd Re R1 R2 R3 R4
A 1 0 0 −1 0 0 −1
B 0 0 0 1 −1 −1 −1
C 0 0 0 0 1 −1 0
D 0 −1 0 0 0 1 0
E 0 0 −1 0 0 0 1



3.2 Flux Distribution

The flux distribution r describes all fea-
sible fluxes, whereas there is a feasibility
criterion (ri ≥ 0).

3.3 Mass Balance

All internal metabolites are in balance,
meaning that the fluxes for each species
are the sum of all going in minus the
ones going out.

dci
dt

= f luxesi,in − f luxesi,out (1)

3.4 Balancing Equation

The balancing equation is the product
of the stoichiometric matrix and the flux
distribution vectors.

dci
dt

= N ∗ r(t) (2)

N is invariant whereas r is the time vari-
ant. Under (quasi) steady state condi-
tions we assume the rate of change to be
zero :

N ∗ r = 0 (3)

3.5 Kernel

All feasible solutions lie in the nullspace
of N with dimensions

d = q− rank(N) (4)
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The rank describes the linearly indepen-
dent column vectors of N. (get the Ma-
trix into row echelon form and look at
the non-zero rows of the transpose). Any
solution r is given by a linear combina-
tion of the columns of k; k is the basis of
the solution space.

3.6 Conservation Relations

Weighted sums of metabolite concentra-
tions that are always the same. Corre-
spond to the linearly dependent rows in
N. They lie in the left null space of N -
the derivative is zero. Therefore we can
find CRs by using the following formula:

yT ∗ N = 0 or y ∗ NT = 0 (5)

Example
The following example shows the
way to show what are CRs:

2[A]− [B] + [C] = 0 (6)
−[A] + [B] + [D] (7)

N ∗ yT = 0 (8)

∀N =

(
−1 −1 1 0
0 −1 −1 1

)
(9)

yT =


2
−1
2
0

 ∨

−1
1
0
1

 (10)

(11)

3.7 Flux Balance Analysis

Incorporate further constraints to limit
the network behaviour (Quasi steady
state, reaction reversibilities, optimal
feasibility criterion).

3.8 Flux Variability Analysis

Identify minimal and maximal fluxes.
Then identify the maximum of one ob-
jective as the new constraint. Return the
min and max of what is possible. Has
the problem of running into a pareto op-
timum.

4 Dynamic Systems

4.1 Stability Analysis of Steady
States

1. Calculate the Jacobian from the dif-
ferential equations

2. Plug in the steady state values for
x and y

3. Check if tr(JSS) < 0 and det(JSS) >
0 as conditions for stability and
tr2− 4det < 0 as a condition for os-
cillations

5 Systems Identification

5.1 Sensitivity Matrix

Indicates how strongly the system re-
sponds in changes to different parame-
ters.
ADD SENSITIVITY MATRIX

5.2 Fisher Information Matrix

F(p) =
N

∑
i=1

(
S(ti)

TS(ti)

σ(ti)

)
, σi ≥

√
[F(p)−1]ii

A 2× 2-matrix is inverted as follows.

A−1 =

[
a b
c d

]−1
=

1
det A

[
d −b
−c a

]
=

1
ad− bc

[
d −b
−c a

]

5.3 Maximum Likelihood Pa-
rameter Estimates

We define the objective function; mini-
mizing the error between the model and
the experimental data.

φ(P) =
n

∑
i=1

(
e(ti)

σ(ti)

)2

Where e(ti) = x(ti)− xm(ti)
Find the minimal value by calculating
the partial derivatives ∂φ

∂x0
and ∂φ

∂k of the
function. Solve the resulting equations
for x0 and k.
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6 Simplified
Dynamic Models

6.1 Qualitative dynamics

Nullclines First we want to find the
nullclines. Let’s suppose we have two
ODEs for Xa and Xb solve them for 0 and
express these as functions of Xa and Xb.

dXa

dt
= 0

dXb
dt

= 0 (12)

Steady states Now we want to find one
ore more steady state(s). Again we solve
the ODEs for 0 but now we set them
equal to get rid of the parameters Xa, Xb.
We do this by expressing one function in
terms of Xa and plug this into the other
function. The coordinates of the steady
states should be expressed as a function
of the unknown parameters e.g. the re-
action rates ka and kb.

Qualitative phase portrait Using the
nullclines, the steady state and a vector
field we will see the behaviour of our
system in the qualitative phase portrait.
To get the vector field we have to look
under which conditions our ODE sys-
tems (dXi/dt) is greater or equal to 0.
This corresponds to in which direction
our system changes. Let’s suppose that
Xa is on the x-axis and Xb is on the y-
axis in our phase portrait. If dXa/dt > 0

we move towards higher values of Xa
and if dXa/dt < 0 we move towards
smaller values of Xa in the direction of
the x-axis. We do the same for Xb and
combine the information to a vector of
movement. The nullcline corresponds to
zero change, so if we cross a nullcline
the corresponding direction of the vec-
tor should change. The intersection(s) of
the nullclines corresponds to the steady
state(s).

Derivative sign pattern The derivative
sign pattern

π(RRegion) Region = 1, ..., n (13)

shows in which direction the vector field
”moves” in different regions. To get
the derivative sign pattern we split the
graph into different regions. Every area
that lies between nullclines is a region,
the nullclines are separate regions and
if there is an intersection with another
nullcline every sub part of each nullcline
is a unique region and the intersections
are a region. The derivative sign pattern
is a vector with dimensions of the phase
portrait (number of ODEs). The entries
of the vector have a + sign, if the cor-
responding dXi/dt > 0, a − sign, if the
corresponding dXi/dt < 0 or a 0, if the
corresponding dXi/dt = 0.

Example

6.2 Logical Models

Boolean 0 means Gene inactive → Pro-
tein absent, boolean 1 means Gene active
→ Protein present. The logical functions
are:

• and: ∧
1∧ 1 = 1; 1∧ 0 = 0; 0∧ 0 = 0

• or: ∨
1∨ 1 = 1; 1∨ 0 = 1; 0∨ 0 = 0

• not: ¬
¬1 = 0;¬0 = 1

Logical functions and state table Log-
icals functions define the output of a
module (gene) in the next round given
its inputs in the current round. All pos-
sible combinations can be visualise in a
state table.

Transition graphs If we consider a syn-
chronous update, every input will be
evaluated at the same time. We can sim-
ply connect every inputs from the state
table with its corresponding output from
the state table.
When considering asynchronous update
we have to evaluate every input sepa-
rately, take its output as the input for the
other rules and check if we end up in a
different state.

Steady states Steady state(s) are given
by the states that point to themself(s).
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Example
Consider the following gene net-
work:

The logical functions are given by:

Xa = ¬c, Xb = a, Xc = ¬b

7 Stochastic Systems
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Example
Write down the chemical master
equation of the following system.

We see that this system has two states
s = 1 and s = 0. We formulate chemical
master equation for both of these states.

The differential probability of being in
state (s = 0) over time is the following.

dP(s = 0, np, t|s0, n0
p, t0)

dt
=

−(λ + δnp)P(s = 0, np, t|s0, n0
p, t0)︸ ︷︷ ︸

1

+

δ(np + 1)P(s = 0, np + 1, t|s0, n0
p, t0)︸ ︷︷ ︸

2

+

µP(s = 1, np, t|s0, n0
p, t0)︸ ︷︷ ︸

3

1 Describes the situation of moving
away from any state in (s = 0) to
any other state in (s = 0) (Which is
expressed by δnpP(...) as this can
happen for any of the np proteins
with rate δ) or to any state (s =
1) (Which is expressed by λP(...),
this is independent from np as we
consider the gene here and not the
np proteins.) The term is denoted
with a leading minus-sign as we
describe moving away from said
states here.

2 Describes the situation of moving
from any state (s = 0, np) to the
state (s = 0, np − 1). This can hap-
pen for every protein np + 1. (We
had one protein more before this
transition), thus we get δ(np + 1)
times the probability of being in
state P(s = 0, np + 1).

3 Describes the situation of moving
from any state (s = 1) to any
state (s = 0). This transition
from the active gene to the passive
gene happens with rate µ times the
probability of being in state P(s =
1).
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Poincaré Diagram: Classification of Phase Portaits in the (det A, Tr A)-plane

Tr A

det A
=0

=0:
det A= 1

4 (Tr A)2

saddle

centeruniform
motion

sink source

line of stable fixed points line of unstable fixed points

spiral sink spiral source

degenerate sink degenerate source
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