Data Structures and Algorithms SS2O

Algorithms

Notions of Growth

Tools Concerning Growth

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \Rightarrow f \in \mathcal{O}(g), \mathcal{O}(f) \subsetneq \mathcal{O}(g) ; \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=C>0(C \text { constant }) \\
\Rightarrow f \in \Theta(g) ; \frac{f(n)}{g(n)} n \rightarrow \infty \infty g \in \mathcal{O}(f), \mathcal{O}(g) \subsetneq \mathcal{O}(f) ; \sum_{k=1}^{n} k=\frac{n(n+1)}{2}
\end{array}
$$

Master Theorem

Let $a \geq 1$ and $b>1$ be constants and
$T(n)=a T(n / b)+f(n)$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$ for $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \times \lg n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for $\epsilon>0$, and $a f(n / b) \leq c f(n)$ for $c<1$, then $T(n)=\Theta(f(n))$

Logarithms and Important Sums

$\log _{b} x=\log _{b} a \times \log _{a} x, a^{\log _{b} x}=x^{\log _{b} a}, \ln (n!)=$ $\sum_{i=1}^{n} \ln i=\approx n \ln (n)-n, \sum_{i=0}^{n} i^{k} \in \Theta\left(n^{k+1}\right), \sum_{i=0}^{n} p^{i}=$ $\frac{p^{n+1}-1}{p-1}, \sum_{i=0}^{\infty} p^{i}=\frac{1}{1-p} \forall p \in[0,1)$

Combinatorics

Binomial coefficient $\binom{n}{k}=\frac{n!}{k!(n-k)!}$,
$\binom{n}{0}=\binom{n}{n}=1,\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1},\binom{n}{n-k}=\binom{n}{k}$

De l'Hôpital rule

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions with $f(x) \rightarrow \infty, g(x) \rightarrow \infty$ for $x \rightarrow \infty$. If $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

Maximum Subarray Alogrithm Runtime : $\Theta(n)$

Algorithm 1: Inductive Maximum Subarray
Input : $\left(a_{1}, a_{2}, . .-, a_{n}\right)$
Output: $\max 0, \max _{i, j} \sum_{k=i}^{j} a_{k}$
${ }_{1}$ for $i \underset{R}{\underset{R}{\leftarrow}} \underset{R}{\ldots}+a_{i}$
if $R \lll<0$ then
end
if $R>M$ then
end
end
return M

Searching

Linear Search

Best case: 1 comparison; Worst case: n comparisons
Expected: $\mathrm{E}(x)=\frac{1}{n} \sum_{i=1}^{n} i=\frac{n+1}{2} \in \Theta(n)$

Binary Search

divide and conquer approach $\rightarrow \Theta(\log n)$ Works with two pointers l and r. If $l>r$ the search was without result.

```
Algorithm 2: Breadth-first search
    Input : A graph G and a starting vertex root of G
    Output: The parent links trace the shortest path back to root
    1 let Q be a queue
    label root as discovered
    3 Q.enqueue(root)
    while \(Q\) is not empty do
        \(v:=Q\).dequeue() if \(v\) is the goal then
        end
        for all edges from \(v\) to \(w\) in G.adjacentEdges(v) do
            f \(w\) is not labeled as discovered then
            label \(w\) as discovered
            Q.enqueue(w)
            end
        end
end
```


Selecting

Pivot

```
Algorithm 3: Selection via Pivot
Input : Array A of length \(n\) with pivot \(p\)
Output: A partitioned around p with position of p
\(l \leftarrow 1\)
```



```
        end
while
```

 end
 while
$\underset{r}{\text { while }} \underset{r}{ } \underset{\leftarrow}{ }[r]>p_{-1}$ do
$\underset{r}{\text { while }} \underset{r}{ } \underset{\leftarrow}{ }[r]>p_{-1}$ do
end
end
$\operatorname{swap}(\mathrm{A}[l], \mathrm{A}[r])$ if $A[l]=A[r]$ then
$\operatorname{swap}(\mathrm{A}[l], \mathrm{A}[r])$ if $A[l]=A[r]$ then
$\mid \quad l \leftarrow l+1$
$\mid \quad l \leftarrow l+1$
end
end
12 end
12 end
${ }_{13}^{12}$ end return $l-1$

```
\({ }_{13}^{12}\) end return \(l-1\)
```

```
Algorithm 4: Quickselect
```

Algorithm 4: Quickselect
Input : Array A of length $\mathrm{n} ; 1 \leq k \leq n$
Input : Array A of length $\mathrm{n} ; 1 \leq k \leq n$
$x \leftarrow$ RandomPivot(A)
$x \leftarrow$ RandomPivot(A)
$m \leftarrow$ if k Partition (A, x)
$m \leftarrow$ if k Partition (A, x)
3 if $k<m$ then
3 if $k<m$ then
return Quickselect(A[o..m-1],k)
return Quickselect(A[o..m-1],k)
6 if $k>m$ then
6 if $k>m$ then
return Quickselect(A[m+1..n],k) else
return Quickselect(A[m+1..n],k) else
return $A[k]$
return $A[k]$
end
end
10 end
10 end bubble). $\Theta\left(n^{2}\right)$ stable
Selection sort: swap the smallest element in the unsorted part with the most right element of the sorted part. $\Theta\left(n^{2}\right)$ unstable
$\operatorname{arr}[]=6425122211$
// Place min at beginning
1125122264
11 Place min at beginning
1112252264
Insertion sort: Determine the insertion position of element i. $\Theta\left(n^{2}\right)$ stable
1: Iterate over the array (curr).
2: Compare curr to predecessor (pre).
3: If curr < pre,
compare it to the elements before.
Larger elements are moved back 1 pos
Merge sort: At least two parts of the Array are already sorted. Iterative merging of the already sorted bits. $\Theta(n \log n), \Theta(n)$ storage, stable, needs intermediate storage for the merging step

```

\section*{Quicksort}
```

Algorithm 5: Quicksort

```
Algorithm 5: Quicksort
    Input : Array A of length
    Input : Array A of length
    Output: Array A sorted
    Output: Array A sorted
    if \(n>1\) then
    if \(n>1\) then
    Choose Pivot \(p \in A k \leftarrow \operatorname{Partition}(\mathrm{~A}, \mathrm{p})\)
    Choose Pivot \(p \in A k \leftarrow \operatorname{Partition}(\mathrm{~A}, \mathrm{p})\)
        Quicksort(A[1,...,k-1])
        Quicksort(A[1,...,k-1])
        Quicksort(A[k+1,...,n])
        Quicksort(A[k+1,...,n])
end
```

end

```

\section*{Algorithm 6: Partition}
```

Input : Array A, that contains the pivot p in $\mathrm{A}[\mathrm{l}, \ldots, \mathrm{r}]$ at least once.
Output: Array A partitioned in $[l, \ldots, r]$ around p. Returns position of p.
while $l \leq r$ do
while $A[l]<p$ do
end $l=l+1$
while $A[r] \geq p$ do
end $r=r-1$
end
। $\quad r=r-1$
end
swap $(A[l], A[r])$
$\operatorname{swap}(A[l], A[r])$
if $A[l]=A[r]$ then
if $A[l]=A[r]$ the
end
end
3 return $l-1$

```

\section*{Sorting}

Bubblesort: Always swap if \(A[i-1]_{\text {seroca } A[i] \text { soln }}\) each round, the max in the unsorted part will move to the right (like a

Runtime: in the mean \(\mathcal{O}(n \cdot \log \cdot n)\), worst case \(\Theta\left(n^{2}\right)\) if worst pivots are selected each time.

\section*{Radix Sort}
n -locks for n -keys \(\in \mathcal{O}(n)\). We have m -adic binary
numbers, so two categories to sort the numbers into. Used for numbers (and strings via UTF-8/ASCii)

\section*{Bucket Sort}

Create a number of buckets. Sort e.g. after decimality into buckets and sort those buckets then. Can be implemented via linked list or a dynamic list(heap?).
\(01110110100000110001 \quad 1221312112232238181929\)


\section*{0001001101100111000}

Radix Sort
Bucket Sort

\section*{Hashing}

\section*{Basics}

Common: \(h(k)=k \bmod m\)
Often: \(m=2^{k}-1\)
Linear Probing: \(S(k)=(h(k), h(k)+1, \ldots, h(k)+m-1)\)
\(\bmod m\) Issue: Primary clustering, long contiguous areas of used entries.

\section*{Quadratic Probing:}
\(S(k)=(h(k), h(k)+1, h(k)-1, h(k)+4, \ldots) \bmod m\) Issue: Secondary clustering, traversal of the same probing sequence.

\section*{Double Hashing: \(S(k)=\)}
\(\left(h(k), h(k)+h^{\prime}(k), h(k)+2 h^{\prime}(k), \ldots, h(k)+(m-1) h^{\prime}(k)\right)\) \(\bmod m\)

\section*{Trees}

Trees are connected, directional and acyclic graphs.

\section*{Removing a child}
- No children - Remove the node
- 1 child-Replace by the only child
- 2 children - Replace by the symmetric descendent

\section*{Ways of traversal}

\section*{Preorder}
\(v\), then \(T_{l e f t}(v)\), next \(T_{\text {right }}(v)\) construct by: first element is root. first element larger than root is right child, remaining elements form left child. process both subrees recursively (first child is root)

\section*{Postorder}
\(T_{\text {left }}\), then \(T_{\text {right }}\), next \(v\) construct by: last element is root. last element smaller than root is left child, remaining elements form right subtree. process the subtrees recursively (starting with right most node as parent)

\section*{Inorder}
\(T_{\text {left }}\), then \(v\), next \(T_{\text {left }} \rightarrow\) ascending sequence.

\section*{Heaps}

Keys are strictly larger/smaller depending on Max- or Minheap.

\section*{Insertion}

Inserting a key into a heap can possibly violate the heap settings - Is reinstated by successive rising up.

\section*{Heap Sort}

Every subtree is a heap - inductive sorting from below. \(\rightarrow \mathcal{O}(n \cdot \log n)\)

\section*{Quadtrees}

Partitioning a subsection into 4 equal parts. If there are too many objects stored in one node, we split the node into four children. Objects that are falling on a border are stored in the parent node.

\section*{AVL trees}

AVL trees guarantee a runtime of \(\mathcal{O}(\log n)\) \(\operatorname{bal}(v):=h\left(T_{r}(v)\right)-h\left(T_{l}(v)\right)\)
AVL condition: \(\forall v \in V: b a l(v) \in\{-1,0,1\}\)

\section*{Rebalancing AVL trees}


\section*{Dynamic Programming}

\section*{Samples}

One-dimensional

Problem: Finding the longest possible combination of downwards ski slopes with lengths \(l_{i}\). The slopes connect the stations with heights \(h_{i}\).
1. Table: \(n \times 1\)
2. Entry: \([i]\) : longest descent that ends in \(i\).
3. Calculation: \(D[i]=0, \forall i=1, \ldots, n\) and
\(D[i]=\max _{\text {Slope }(j, i)}\{D[j]+l(j, i)\}\)
4. Order: for i in ( \(1, \mathrm{n}\) ) ; D[i]
5. Result: \(\max (D)\)
6. Reconstruction: Recursively walk back from result and check \(D[i]=D[j]+l(j, i)\) for all slopes \((j, i)\)

\section*{Two-dimensional}

Problem: Finding the smallest possible value of an expression ( \(n\) values \(a_{i}\) and \(n-1\) operators \(s_{i}\) ) using optimal bracket placement.
1. Table: \(n \times n\) : Only upper right triangular matrix is used.
2. Entry: \([i, j]\) : smallest possible value of
sub-expression from value \(a_{i}\) to \(a_{j}\).
3. Calculation: \(A_{i, i}=a_{i} ; 1 \leq i \leq n\) and
\[
A_{i, j}=\min _{i \leq k \leq j}\left\{A_{i, k-1}\left\langle s_{k-1}\right\rangle A_{k, j}\right\} ; 1 \leq i \leq j \leq n
\]
4. Order: for s in ( \(0, \mathrm{n}-1\) ); for in (1, \(\mathrm{n}-\mathrm{s}\) ); A \([i, i+s]\)
5. Result: \(\mathrm{A}[1, \mathrm{n}]\)
6. Reconstruction: Recursively walk back and check \(A_{i, j}=A_{i, k-1}\left\langle s_{k-1}\right\rangle A_{k, j}\)

\section*{Graphs}

\section*{Basics}

Connected: Graph where there is a connecting path (not edge) between each pair of nodes.
Complete: Graph where there is an edge between each pair of nodes.

\section*{Algorithms}
```

Algorithm 7: Depth First Visit
Input : $G=(V, E)$
${ }_{2}$ for $v \in V$ do
${ }^{2}$ end v.color \leftarrow white;
3 end
4 for v
${ }_{5}^{4}$ for $v \in V$ do \quad if v.color $=$ white then
| $\operatorname{DFS}-\operatorname{Visit}(G, v)$
end
8 end

```

\section*{Topological Sorting}

A directed graph has a topological sorting if it is acyclic. Idea We successively prune our graph by removing elements that have o entry edges (and then update the entry edges of the successors to find the next one.
```

Algorithm 8: Topological Sorting
1 A[v] contains number of entry edges of vertex v (calculate by setting
A[w]=0 and then loop through (v,w) \inE and set A[w]+=1
for v\inV where }A[v]==0\mathrm{ do
Push(S,v)
4 end
i=0;
v}\leftarrow\operatorname{pop}(S);\operatorname{ord}[v]
for (}v,w)\mathrm{ in E do
A[w] \leftarrowA[w]-1; //decrease incoming for all successors
f }A[w]==O\mathrm{ then
push(S,w)
end}\mathrm{ end
end
if i=|V| then
17 | return SUCCES
18 end
20 else return "Cycle detected"
21 end

```

\section*{Shortest Path}

On either directed or non-directed, weighted graph, find the shortest distance between a point A and all the other points in the graph.

\section*{Dijkstra}

\section*{Algorithm 9: Dijkstra}

Input : \(G=(V, E\), source \()\)
1 create vertex set Q //as a queue / min heap;
\({ }_{2} \quad\) for \(u \in V\) do
dist \([u] \leftarrow\) INFINITY;
prev \([u] \leftarrow\) UNDEFINED
end
dist \([\) source \(]=0\)
8 while \(Q\) not empty do
\(u=Q . \operatorname{Extract} \operatorname{Min}()\);
for \(v\) in Neighbors of \(u\) still in \(Q\) do
if alt \(<\operatorname{dist}[u]+\) length \([v]\) then \((u, v)\);
if alt < dist \([v]\) then
\(\operatorname{dist}[v]=\) alt;
prev \([v]=u ;\)
. DecreasePriority \((v\), alt \() ;\)
end
end

\section*{Runtime of Dijkstra}
- any data structure: \(\mathcal{O}\left(|V| \cdot T_{e m}+|E| \cdot T_{d p}\right)\)
- with an array or linked list \(\mathcal{O}\left(|V|^{2}+|E|\right)=\mathcal{O}\left(|V|^{2}\right)\)
- dense graph in adjacency list \(\mathcal{O}\left(|V|^{2} \log |V|\right)\) since \(|E|=|V|^{2}\) and DecreaseKey \(\log (|V|)\)
- sparse connected graph in adjacency list/ stored in binary tree \(\mathcal{O}(|E| \log |V|)\)

\section*{A-Star}

Dijkstra with a heuristic to visit nodes closer to the goal first (i.e. use Euclidean distance has an underestimation of which could be the closest points). \(A^{*}\) minimizes \(f(n)=\)
\(g(n)+h(n)\), where \(g(n)\) is distance from the start, \(h(n)\) estimation to goal.

\section*{Bellman-Ford}

Instead of optimizing the order in which vertices are processed, Bellman-Ford simply relaxes all the edges \(|V|-1\) times and hence runs in \(\mathcal{O}(|V||E|)\) time.
```

Algorithm 10: Bellman-Ford
Input : $G=(V, E$, source $)$
${ }_{2}^{1} \stackrel{\text { for }}{ } u \in V$ do \quad dist $[u] \leftarrow$ INFINITY;
3 prev $[u] \leftarrow$ UNDEFINED;
4 end
5 dist $[$ source $]=0$,
for i in $|V|-1$ do
$/ / \mathrm{i}$ is never used, just a counter
for u in $|V|$ do
for v in Neighbors of u do
alt $=$ dist $[u]+$ length (u, v);
if alt $<\operatorname{dist}[v]$ then
alt $<\operatorname{dist}[v]$ then
dist $[v]=$ alt;
end $\operatorname{prev}[v]=u ;$
end
end
end
for each edge (u, v) with weight w in $|E|$ do
if $\operatorname{dist}[u]+w<\operatorname{dist}[v]$ then
end error "Graph contains a negative-weight cycle"
d

```
Runtime of Bellman Ford
    - \(\mathcal{O}(|E| \cdot|V|)\)
Floyd-Warshall

Goal is to find the shortest path between all pairwise edges in a Graph G.
```

Algorithm 11: Floyd-Warshall
Input : $G=(V, E)$
1 let G dist be a $|V||V|$ array of minimum distances initialized to ∞
${ }_{2}$ for each edge (u, v) do
${ }_{3} \mid \operatorname{dist}[u\rfloor[v] \leftarrow w(u, v) / /$ The weight of the edge (u, v)
4 end
5 for each vertex v do
dist[v][v] $\leftarrow 0$
7 end
for k from 1 to $|V|$ do
for j from 1 to $|V|$ do
if $\operatorname{dist}[i][j]>\operatorname{dist}[i][k]+\operatorname{dist}[k][j]$ then
| $\operatorname{dist}[i][j] \leftarrow \operatorname{dist}[i][k]+\operatorname{dist}[k[j[j]$;
end end
end
15 end

```

\section*{Runtime of Floyd-Warshall}
- \(\mathcal{O}\left(|V|^{3}\right)\)

\section*{Johnson's Algorithm}

Find the shortest paths between all pairs of vertices in an edge-weighted (negative), directed graph. Negative cycles are not allowed. It uses Bellman-Ford to remove all
negative weights and then applies Dijkstra on the graph. The runtime is given by \(\mathbf{O}\left(|V|^{2} \log |V|+|V||E|\right)\). Thus when the graph is sparse the algorithm is faster than
Floyd-Warshall which solves the same problem in \(\mathbf{O}\left(|V|^{3}\right)\).
1. New node \(q\) is added to the graph connected by zero-weight edges to each of the other nodes.
2. Bellman-Ford is used starting from the new vertex \(q\) to find the minimum weight from \(q\) to each vertex \(v\). If a negative cycle is detected the algorithm terminates.
3. The original edges are reweighted using the values computed in the Bellman-Ford step.
\(w^{\prime}(u, v)=w(u, v)+h(u)-h(v)\)
4. \(q\) is removed and Dijkstra is used to find the shortest paths from each node \(s\) to every other vertex in the reweighted graph. The original distance is computed by adding \(h(v)-h(u)\).

\section*{Choice of algorithm}
- No weights or all equal weights \(\rightarrow \operatorname{BFS}(\Theta(|V|+|E|))\)
- Only positive weights \(\rightarrow\) Dijkstra with Fibonacci Heap \((\mathcal{O}(|V| \cdot \log (|V|)+|E|))\)
- Some negative weights \(\rightarrow\) Bellman Ford \(\left(\mathcal{O}\left(|E| \cdot|V|^{2}\right)\right)\)
- All pairs of shortest paths.
- V times Dijkstra. If negative edges, recreate
graph with Johnson first \(\mathcal{O}(|E| \cdot|V| \log |V|)\)
- Floyd-Warshall. \(\mathcal{O}\left(|V|^{3}\right)\)
- Johnsons in a sparse graph.
\(\mathbf{O}\left(|V|^{2} \log |V|+|V||E|\right)\)

\section*{Minimum Spanning Tree}

Given is a undirected weighted connected graph \(G(V, E)\). Searched is a minimum spanning tree:
- Tree: connected and acyclic
- Spanning tree: All vertices \(v \in V\) are connected.
- minimal: \(c(T)=\min \sum_{e \in E} c(e)\)

\section*{Kruskal algorithm}
```

Algorithm 12: Kruskal
1 Sort edges increasingly after their weight: $c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \ldots c\left(e_{m}\right)$
$\leftarrow \emptyset$ for $k=1$ to m do
if $A \cup A e_{k}$ then e^{\leftarrow}
end

```

Starts with the smallest edge! Edges that would create a cycle are subsequently discarded in the process \(\rightarrow\) exam question.
Runtime: \(\mathcal{O}(E \log E)\)

\section*{Jarnik (Prims) Algorithm}
\[
\begin{aligned}
& \text { Algorithm 13: Jarnik Algorithm } \\
& \hline \mathbf{1} \text { start with } v \in V A \leftarrow \emptyset \\
& \mathbf{2} S \leftarrow v_{0} \text { for } i=1 \text { to }|V| \text { do } \\
& \mathbf{3} \mid \text { choose cheapest }(u, v) \text { with } u \in S \text { and } v \notin S \\
& \mathbf{4} \mid A \leftarrow A \cup(u, v) \\
& \mathbf{5} \mid \leftarrow S \leftarrow S \cup v \\
& \mathbf{6} \text { end }
\end{aligned}
\]

Main difference to Kruskal is, that it starts at \(v \in V\) and chooses the cheapest edge from there.
Runtime: \(\mathcal{O}(E+V \log V)\) with fibonacci heaps.
UnionFind
Find( \(x\) ): Find the node \(x\), go to the root of this subtree and return it. Union: Add the smaller subtree as a child to the larger subtree.

\section*{Max Flow / Min Cut}

Given a flow network, determine the maximal flow allowed. The cut of the Graph \(G(S, T)\) into a source graph \(S\) and a sink graph \(T\) with the smallest capacity ( min cut ) will have the same capicity as the maximal flow.

\section*{Ford-Fulkerson}

Algorithm 14: Ford-Fulkerson
\({ }_{2}\) for \((u, v) \in E\) do
\({ }_{3}{ }^{2}\) end
\(4 / / G_{f}\) describes network capacities minus the existing flows
5 while Path \(p\) exists from s to \(t\) in residual network \(G_{f}\) do
\(c_{f}(p) \leftarrow \min \left(c_{f}(u, v) \in p\right)\);
//increase the flow along this path

\(c_{f}(e) \leftarrow c_{f}(e)-c_{f}(p) ;\)
end
12 end

\section*{Edmonds-Karp}

Edmonds-Karp implements the Ford-Fulkerson algorithm by using a BFS search on the residual network.
Runtime of Ford-Fulkerson with Integers If \(f *\) is the maximum flow in the graph then, \(\mathcal{O}(|E| \cdot f *)\), because the flow needs to increase by at least 1 in each iteration and each can be done in \(\mathcal{O}(|E|)\) time.
Runtime of Edmonds-Karp \(\mathcal{O}(|V||E|)\) iterations, each of which can be done in \(\mathcal{O}(|E|)\) times, so \(\mathcal{O}\left(|V||E|^{2}\right)\)

\section*{Parallel Programming}

Amdahl assumes a fixed relative sequential portion ( \(\lambda\) ), Gustafson assumes a fixed absolute sequential part. Amdah: \(S_{A}=\frac{1}{\lambda+\frac{1-\lambda}{p}}\) Gustafson: \(S_{G}=p-\lambda(p-1)\)

\section*{Speedup calculation}
\(\left.T_{p} \leq \frac{T_{1}}{p}+T_{\infty} \right\rvert\, S_{p} \geq \frac{T_{1}}{T_{p}}\)
\[
T_{\infty}=\text { longest single path } \left\lvert\, S_{\infty}=\frac{T_{1}}{T_{\infty}}\right.
\]

\section*{Performance Model}

We have \(p\) processors and the corresponding execution time \(T_{p}\).
\(T_{\infty}\) : The span of the execution network or longest path. Thus the time needed if we have an infinite number of
processors.
\[
\text { Parallelism }=T_{1} / T_{\infty}
\]

\section*{Lower Bound Laws}
\[
\begin{aligned}
T_{p} \geq T_{1} / p & \text { Work law } \\
T_{p} \geq T_{\infty} & \text { Span law }
\end{aligned}
\]

\section*{Parallel Programming in \(\mathbf{C + +}\)}
std::mutex
- Owned when lock was called until unlock is called.
- When owned all other threads block (halt) when lock is called.
std: :unique_lock
std::unique_lock<std::mutex> lck (mtx);//Locked lck.unlock();
- In locked state upon construction unless deferred using std: : defer_lock.
- Will handle unlocking upon destruction like std: : lock_guard but additionally provided locking and unlocking capabilities.
std::condition_variable
std::condition_variable cv;
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []\{return \(x==1 ;\}\) );
lk.unlock();
cv.notify_one();
cv.notify_all();
- std: : condition_variable takes a std: :unique_lock<std: :mutex> which protects the shared variable.
- Releases the std : :mutex and executes a wait operation on the current thread if the condition does not hold.
- Upon notify_all or notify_one wakeup it will reacquire the mutex atomically and check the condition.

\section*{Race Conditions}

\section*{Data Race}

Bad synchronisation of a shared resource, e.g. two writing processes at the same time.

\section*{Bad Interleaving}

Unlucky order of execution of e.g. two threads even though the shared resource is otherwise well synchronised.
```

