
Data Structures and Algorithms SS20

Algorithms

Notions of Growth
1, log logn,

√
logn, log

√
n, logn,

√
n, n, n logn, n2,

(
n
3

)
∈ n3, nc, 2n, n!, nn

Tools Concerning Growth

lim
n→∞

f(n)

g(n)
= 0 ⇒ f ∈ O(g),O(f) (O(g); lim

n→∞
f(n)

g(n)
= C > 0(C constant)

⇒ f ∈ Θ(g);
f(n)

g(n)
→

n→∞ ∞g ∈ O(f),O(g) (O(f);
n∑
k=1

k =
n(n + 1)

2

Master Theorem
Let a ≥ 1 and b > 1 be constants and
T (n) = aT (n/b) + f(n). Then T (n) has the following
asymptotic bounds:

1. If f(n) = O(nlogb a−ε) for ε > 0, then T (n) = Θ(nlogb a)
2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a × lg n)
3. If f(n) = Ω(nlogb a+ε) for ε > 0, and af(n/b) ≤ cf(n)

for c < 1, then T (n) = Θ(f(n))

Logarithms and Important Sums
logb x = logb a× loga x, a

logbx = xlogba, ln(n!) =∑n
i=1 ln i =≈ n ln(n)− n,

∑n
i=0 i

k ∈ Θ(nk+1),
∑n
i=0 p

i =
pn+1−1
p−1 ,

∑∞
i=0 p

i = 1
1−p∀p ∈ [0, 1)

Combinatorics
Binomial coe�cient

(
n
k

)
= n!

k!(n−k)! ,(
n
0

)
=
(
n
n

)
= 1,

(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
,
(
n

n−k
)

=
(
n
k

)
De l’Hôpital rule

Let f, g : R→ R be di�erentiable functions with
f(x)→∞, g(x)→∞ for x→∞. If limx→∞

f ′(x)
g′(x) exists,

then limx→∞
f(x)
g(x) = limx→∞

f ′(x)
g′(x)

Maximum Subarray Alogrithm Runtime : Θ(n)

Algorithm 1: Inductive Maximum Subarray
Input : (a1, a2, ..−, an)
Output: max 0,maxi,j

∑j
k=i ak

1 for i = 1, ..., n do
2 R← R + ai
3 if R < 0 then
4 R← 0
5 end
6 if R > M then
7 M ← R
8 end
9 end

10 return M

Searching

Linear Search
Best case: 1 comparison; Worst case: n comparisons
Expected: E(x) = 1

n

∑n
i=1 i = n+1

2 ∈ Θ(n)

Binary Search
divide and conquer approach→ Θ(log n) Works with two
pointers l and r. If l > r the search was without result.

Algorithm 2: Breadth-first search
Input : A graph G and a starting vertex root of G
Output: The parent links trace the shortest path back to root

1 let Q be a queue
2 label root as discovered
3 Q.enqueue(root)
4 while Q is not empty do
5 v := Q.dequeue() if v is the goal then
6 return v
7 end
8 for all edges from v to w in G.adjacentEdges(v) do
9 if w is not labeled as discovered then

10 label w as discovered
11 w.parent := v
12 Q.enqueue(w)
13 end
14 end
15 end

Selecting

Pivot

Algorithm 3: Selection via Pivot
Input : Array A of length n with pivot p
Output: A partitioned around p with position of p

1 l← 1
2 r ← n while l ≤ r do
3 while A[l] < p do
4 l← l + 1
5 end
6 while A[r] > p do
7 r ← r − 1
8 end
9 swap(A[l],A[r]) if A[l] = A[r] then

10 l← l + 1
11 end
12 end
13 return l− 1

Algorithm 4: Quickselect
Input : Array A of length n; 1 ≤ k ≤ n

1 x← RandomPivot(A)
2 m← Partition(A,x)
3 if k < m then
4 return Quickselect(A[0..m-1],k)
5 end
6 if k > m then
7 return Quickselect(A[m+1..n],k) else
8 return A[k]
9 end

10 end

Sorting

Bubblesort: Always swap if A[i− 1] > A[i]. In each round,
the max in the unsorted part will move to the right (like a
bubble). Θ(n2) stable
Selection sort: swap the smallest element in the unsorted
part with the most right element of the sorted part. Θ(n2)
unstable
arr[] = 64 25 12 22 11
// Place min at beginning
11 25 12 22 64
// Place min at beginning
11 12 25 22 64 ...

Insertion sort: Determine the insertion position of
element i. Θ(n2) stable
1: Iterate over the array (curr).
2: Compare curr to predecessor (pre).
3: If curr < pre,
compare it to the elements before.
Larger elements are moved back 1 pos.

Merge sort: At least two parts of the Array are already
sorted. Iterative merging of the already sorted bits. -
Θ(n log n), Θ(n) storage, stable, needs intermediate
storage for the merging step

Quicksort

Algorithm 5: Quicksort
Input : Array A of length n
Output: Array A sorted

1 if n > 1 then
2 Choose Pivot p ∈ A k ← Partition(A,p)
3 Quicksort(A[1,...,k-1])
4 Quicksort(A[k+1,...,n])
5 end

Algorithm 6: Partition
Input : Array A, that contains the pivot p in A[l, . . . , r] at least once.
Output: Array A partitioned in [l, . . . , r] around p. Returns position of p.

1 while l ≤ r do
2 while A[l] < p do
3 l = l + 1
4 end
5 while A[r] > p do
6 r = r − 1
7 end
8 swap(A[l], A[r])
9 if A[l] = A[r] then

10 l = l + 1
11 end
12 end
13 return l− 1

Page 1

Runtime: in the mean O(n · log ·n), worst case Θ(n2) if
worst pivots are selected each time.

Radix Sort
n-locks for n-keys ∈ O(n). We have m-adic binary
numbers, so two categories to sort the numbers into. Used
for numbers (and strings via UTF-8/ASCii)

Bucket Sort
Create a number of buckets. Sort e.g. after decimality into
buckets and sort those buckets then. Can be implemented
via linked list or a dynamic list(heap?).

Hashing

Basics
Common: h(k) = k mod m
Often: m = 2k − 1
Linear Probing: S(k) = (h(k), h(k) + 1, ..., h(k) +m− 1)
mod m Issue: Primary clustering, long contiguous areas of
used entries.
Quadratic Probing:
S(k) = (h(k), h(k) + 1, h(k)− 1, h(k) + 4, ...) mod m Issue:
Secondary clustering, traversal of the same probing
sequence.
Double Hashing: S(k) =
(h(k), h(k) + h′(k), h(k) + 2h′(k), ..., h(k) + (m− 1)h′(k))
mod m

Trees
Trees are connected, directional and acyclic graphs.

Removing a child
• No children - Remove the node
• 1 child - Replace by the only child
• 2 children - Replace by the symmetric descendent

Ways of traversal

Preorder
v, then Tleft(v), next Tright(v) construct by: first element is
root. first element larger than root is right child, remaining
elements form left child. process both subrees recursively
(first child is root)

Postorder
Tleft, then Tright, next v construct by: last element is root.
last element smaller than root is left child, remaining
elements form right subtree. process the subtrees
recursively (starting with right most node as parent)

Inorder
Tleft, then v, next Tleft → ascending sequence.

Heaps
Keys are strictly larger/smaller depending on Max- or
Minheap.

Insertion
Inserting a key into a heap can possibly violate the heap
settings - Is reinstated by successive rising up.

Heap Sort
Every subtree is a heap - inductive sorting from below.
→ O(n · log n)

Quadtrees
Partitioning a subsection into 4 equal parts. If there are
too many objects stored in one node, we split the node
into four children. Objects that are falling on a border are
stored in the parent node.

AVL trees
AVL trees guarantee a runtime of O(log n)
bal(v) := h(Tr(v))− h(Tl(v))
AVL condition: ∀v ∈ V : bal(v) ∈ {−1, 0, 1}

Rebalancing AVL trees

Dynamic Programming

Samples
One-dimensional

Problem: Finding the longest possible combination of
downwards ski slopes with lengths li. The slopes connect
the stations with heights hi.

1. Table: n× 1
2. Entry: [i]: longest descent that ends in i.
3. Calculation: D[i] = 0,∀i = 1, ..., n and
D[i] = max

Slope(j,i)
{D[j] + l(j, i)}

4. Order: for i in (1, n); D[i]
5. Result: max(D)
6. Reconstruction: Recursively walk back from result

and check D[i] = D[j] + l(j, i) for all slopes (j, i)

Two-dimensional
Problem: Finding the smallest possible value of an
expression (n values ai and n− 1 operators si) using
optimal bracket placement.

1. Table: n× n: Only upper right triangular matrix is
used.

2. Entry: [i, j]: smallest possible value of
sub-expression from value ai to aj .

3. Calculation: Ai,i = ai; 1 ≤ i ≤ n and
Ai,j = min

i≤k≤j
{Ai,k−1〈sk−1〉Ak,j}; 1 ≤ i ≤ j ≤ n

4. Order: for s in (0, n-1); for i in (1, n-s);
A[i,i+s]

5. Result: A[1,n]
6. Reconstruction: Recursively walk back and check
Ai,j = Ai,k−1〈sk−1〉Ak,j

Graphs

Basics
Connected: Graph where there is a connecting path (not
edge) between each pair of nodes.
Complete: Graph where there is an edge between each
pair of nodes.

Algorithms

Algorithm 7: Depth First Visit
Input : G = (V,E)

1 for v ∈ V do
2 v.color ← white;
3 end
4 for v ∈ V do
5 if v.color = white then
6 DFS-Visit(G, v)
7 end
8 end

Topological Sorting
A directed graph has a topological sorting if it is acyclic.
Idea We successively prune our graph by removing
elements that have 0 entry edges (and then update the
entry edges of the successors to find the next one.

Page 2

Algorithm 8: Topological Sorting
1 A[v] contains number of entry edges of vertex v (calculate by setting

A[w] = 0 and then loop through (v, w) ∈ E and set A[w]+ = 1
2 for v ∈ V where A[v] == 0 do
3 Push(S, v)
4 end
5 i=0;
6 while S! = {} do
7 v ← pop(S); ord[v]← i
8 i++;
9 for (v, w) in E do

10 A[w]← A[w]− 1 ; //decrease incoming for all successors
11 if A[w] == 0 then
12 push(S,w)
13 end
14 end
15 end
16 if i = |V| then
17 return SUCCESS
18 end
19 else
20 return “Cycle detected”
21 end

Shortest Path
On either directed or non-directed, weighted graph, find
the shortest distance between a point A and all the other
points in the graph.

Dijkstra

Algorithm 9: Dijkstra
Input : G = (V,E, source)

1 create vertex set Q //as a queue / min heap;
2 for u ∈ V do
3 dist[u]← INFINITY;
4 prev[u]← UNDEFINED;
5 Q.insert(u);
6 end
7 dist[source] = 0;
8 while Q not empty do
9 u = Q.ExtractMin();

10 for v in Neighbors of u still inQ do
11 alt = dist[u] + length(u, v);
12 if alt < dist[v] then
13 dist[v] = alt;
14 prev[v] = u;
15 Q.DecreasePriority(v, alt);
16 end
17 end
18 end

Runtime of Dijkstra
• any data structure: O(|V | · Tem + |E| · Tdp)
• with an array or linked list O(|V |2 + |E|) = O(|V |2)
• dense graph in adjacency list O(|V |2log|V |) since
|E| = |V |2 and DecreaseKey log(|V |)

• sparse connected graph in adjacency list/ stored in
binary tree O(|E|log|V |)

A-Star
Dijkstra with a heuristic to visit nodes closer to the goal
first (i.e. use Euclidean distance has an underestimation of
which could be the closest points). A* minimizes f(n) =

g(n)+h(n), where g(n) is distance from the start, h(n)
estimation to goal.

Bellman-Ford
Instead of optimizing the order in which vertices are
processed, Bellman-Ford simply relaxes all the edges
|V | − 1 times and hence runs in O(|V ||E|) time.

Algorithm 10: Bellman-Ford
Input : G = (V,E, source)

1 for u ∈ V do
2 dist[u]← INFINITY;
3 prev[u]← UNDEFINED;
4 end
5 dist[source] = 0;
6 for i in |V | − 1 do
7 //i is never used, just a counter
8 for u in |V | do
9 for v in Neighbors of u do

10 alt = dist[u] + length(u, v);
11 if alt < dist[v] then
12 dist[v] = alt;
13 prev[v] = u;
14 end
15 end
16 end
17 end
18 for each edge (u, v) with weight w in |E| do
19 if dist[u] + w < dist[v] then
20 error "Graph contains a negative-weight cycle"
21 end
22 end

Runtime of Bellman Ford
• O(|E| · |V |)

Floyd-Warshall
Goal is to find the shortest path between all pairwise
edges in a Graph G.

Algorithm 11: Floyd-Warshall
Input : G = (V,E)

1 let G dist be a |V ||V | array of minimum distances initialized to∞
2 for each edge (u, v) do
3 dist[u][v]← w(u, v) // The weight of the edge (u, v)
4 end
5 for each vertex v do
6 dist[v][v]← 0
7 end
8 for k from 1 to |V | do
9 for i from 1 to |V | do

10 for j from 1 to |V | do
11 if dist[i][j] > dist[i][k] + dist[k][j] then
12 dist[i][j]← dist[i][k] + dist[k][j];
13 end
14 end
15 end
16 end

Runtime of Floyd-Warshall
• O(|V |3)

Johnson’s Algorithm
Find the shortest paths between all pairs of vertices in an
edge-weighted (negative), directed graph. Negative cycles
are not allowed. It uses Bellman-Ford to remove all

negative weights and then applies Dijkstra on the graph.
The runtime is given by O(|V |2 log |V |+ |V ||E|). Thus when
the graph is sparse the algorithm is faster than
Floyd-Warshall which solves the same problem in O(|V |3).

1. New node q is added to the graph connected by
zero-weight edges to each of the other nodes.

2. Bellman-Ford is used starting from the new vertex q
to find the minimum weight from q to each vertex v. If
a negative cycle is detected the algorithm terminates.

3. The original edges are reweighted using the values
computed in the Bellman-Ford step.
w′(u, v) = w(u, v) + h(u)− h(v)

4. q is removed and Dijkstra is used to find the shortest
paths from each node s to every other vertex in the
reweighted graph. The original distance is computed
by adding h(v)− h(u).

Choice of algorithm
• No weights or all equal weights→ BFS (Θ(|V |+ |E|))
• Only positive weights→ Dijkstra with Fibonacci Heap

(O(|V | · log(|V |) + |E|))
• Some negative weights→ Bellman Ford (O(|E| · |V |2))
• All pairs of shortest paths.

– V times Dijkstra. If negative edges, recreate
graph with Johnson first O(|E| · |V |log|V |)

– Floyd-Warshall. O(|V |3)
– Johnsons in a sparse graph.

O(|V |2 log |V |+ |V ||E|)

Minimum Spanning Tree
Given is a undirected weighted connected graph G(V,E).
Searched is a minimum spanning tree:

• Tree: connected and acyclic
• Spanning tree: All vertices v ∈ V are connected.
• minimal: c(T) = min

∑
e∈E c(e)

Kruskal algorithm

Algorithm 12: Kruskal
1 Sort edges increasingly after their weight: c(e1) ≤ c(e2) ≤ ...c(em)
2 A← ∅ for k = 1 to m do
3 if A ∪ ek then
4 A← A ∪ ek
5 end
6 end

Starts with the smallest edge! Edges that would create a
cycle are subsequently discarded in the process→ exam
question.
Runtime: O(E logE)

Page 3

Jarnik (Prims) Algorithm

Algorithm 13: Jarnik Algorithm
1 start with v ∈ V A← ∅
2 S ← v0 for i = 1 to |V| do
3 choose cheapest (u, v) with u ∈ S and v /∈ S
4 A← A ∪ (u, v)
5 S ← S ∪ v
6 end

Main di�erence to Kruskal is, that it starts at v ∈ V and
chooses the cheapest edge from there.
Runtime: O(E + V log V) with fibonacci heaps.
UnionFind

Find(x): Find the node x, go to the root of this subtree and
return it. Union: Add the smaller subtree as a child to the
larger subtree.

Max Flow / Min Cut
Given a flow network, determine the maximal flow allowed.
The cut of the Graph G(S,T) into a source graph S and a sink
graph T with the smallest capacity (min cut) will have the
same capicity as the maximal flow.

Ford-Fulkerson

Algorithm 14: Ford-Fulkerson
1 for (u, v) ∈ E do
2 f(u, v) = 0;
3 end
4 //Gf describes network capacities minus the existing flows
5 while Path p exists from s to t in residual networkGf do
6 cf (p)← min(cf (u, v) ∈ p);
7 //increase the flow along this path
8 for edge e(u, v) ∈ p do
9 f(e)← f(e) + cf (p);

10 cf (e)← cf (e)− cf (p);
11 end
12 end

Edmonds-Karp
Edmonds-Karp implements the Ford-Fulkerson algorithm
by using a BFS search on the residual network.
Runtime of Ford-Fulkerson with Integers If f∗ is the
maximum flow in the graph then, O(|E| · f∗), because the
flow needs to increase by at least 1 in each iteration and
each can be done in O(|E|) time.
Runtime of Edmonds-Karp O(|V ||E|) iterations, each of
which can be done in O(|E|) times, so O(|V ||E|2)

Parallel Programming

Amdahl assumes a fixed relative sequential portion (λ),
Gustafson assumes a fixed absolute sequential part.
Amdahl: SA = 1

λ+ 1−λ
p

Gustafson: SG = p− λ(p− 1)

Speedup calculation
Tp ≤ T1

p + T∞ | Sp ≥ T1

Tp

T∞ = longest single path | S∞ = T1

T∞

Performance Model
We have p processors and the corresponding execution
time Tp.
T∞: The span of the execution network or longest path.
Thus the time needed if we have an infinite number ofprocessors.

Parallelism = T1/T∞
Lower Bound Laws

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

Parallel Programming in C++
std::mutex
• Owned when lock was called until unlock is called.
• When owned all other threads block (halt) when lock

is called.
std::unique_lock

std::unique_lock<std::mutex> lck (mtx);//Locked
lck.unlock();

• In locked state upon construction unless deferred
using std::defer_lock.

• Will handle unlocking upon destruction like
std::lock_guard but additionally provided locking
and unlocking capabilities.

std::condition_variable
std::condition_variable cv;
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []{return x == 1;});
lk.unlock();
cv.notify_one();
cv.notify_all();

• std::condition_variable takes a
std::unique_lock<std::mutex> which protects the
shared variable.

• Releases the std::mutex and executes a wait
operation on the current thread if the condition does
not hold.

• Upon notify_all or notify_one wakeup it will
reacquire the mutex atomically and check the
condition.

Race Conditions
Data Race

Bad synchronisation of a shared resource, e.g. two writing
processes at the same time.

Bad Interleaving
Unlucky order of execution of e.g. two threads even though
the shared resource is otherwise well synchronised.

Complexities
Algorithm Time Complexity Space Complexity

Best Average Worst Worst
Quicksort Ω(n · log(n)) Θ(n · log(n)) O(n2) O(log(n))

Mergesort Ω(n · log(n)) Θ(n · log(n)) O(n · log(n)) O(n)

Heapsort Ω(n · log(n)) Θ(n · log(n)) O(n · log(n)) O(1)

Bubble Sort Ω(n) Θ(n2) O(n2) O(1)

Insertion Sort Ω(n) Θ(n2) O(n2) O(1)

Selection Sort Ω(n2) Θ(n2) O(n2) O(1)

Shell Sort Ω(n · log(n)) Θ(n · log(n)2) O(n · log(n)2) O(1)

Bucket Sort Ω(n + k) Θ(n + k) O(n2) O(n)

Radix Sort Ω(n · k) Θ(n · k) O(n · k) O(n + k)

Data Structure Time Complexity
Average Average

Access Search Insertion Deletion
Heap Acc min:O(1) N/A O(1) O(log(n)) O(n)
Array Θ(1) Θ(n) Θ(n) Θ(n)
Stack Θ(n) Θ(n) Θ(1) Θ(1)
Queue Θ(n) Θ(n) Θ(1) Θ(1)

Linked-List Θ(n) Θ(n) Θ(1) Θ(1)
Skip-List Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n))

Hash-Table N/A Θ(1) Θ(1) Θ(1)
Binary

Search Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n))

AVL Tree Θ(log(n)) Θ(log(n)) Θ(log(n)) Θ(log(n))
Worst Space Complexity

Access Search Insertion Deletion Worst
Heap Acc min:O(1) N/A O(log(n)) O(log(n)) O(n)
Array O(1) O(n) O(n) O(n) O(n)
Stack O(n) O(n) O(1) O(1) O(n)
Queue O(n) O(n) O(1) O(1) O(n)

Linked-List O(n) O(n) O(1) O(1) O(n)

Skip-List O(n) O(n) O(n) O(n) O
(n · log(n))

Hash-Table N/A O(n) O(n) O(n) O(n)
Binary

Search Tree O(n) O(n) O(n) O(n) O(n)

AVL Tree O(log(n)) O(log(n)) O(log(n)) O(log(n)) O(n)

Page 4

