General deﬁnitions

N E ) = o ox —é(y—u)TE‘l(y—u)>
need only n? params for joint instead of 2 — 1
entropy H(q) = — [ q(0)log q(0)df = Egq [ —log q(6)]
mutual 1nf0 I(X Y)=H(X)—- H(X|Y) (symmetrlc)
KL div. KL(ql||p) = [ q(6 log q(e) jdf = ngq[log ]
non-negative, zero iff ¢ and p agree a.e., not symmetr
Jensen’s inequality: g(E[X]) < E[g(X)] for g convex,
else flipped (e.g. log(E[X]) > E[log(X)]

Hoeffding’s inequality: for f bounded in [0, C]

P(E[f(X)] = & X2 f(@i)| > €) < 2exp(~2Ne?/C?)
Robins-Monro conditions: Y, e = 00, ., €7 < 00

Bayesian linear regression (BLR)

BLR makes same assumptions as ridge regression:
cond. idd Gaussian noise, Gaussian prior

RR = MAP estimation for LR (y = w’x), i.e. returns
single model, no uncertainty qualification (collapses all
uncertainty onto mode of posterior p(w|X,y))

BLR reasons about full p(w|X,y) ~ N (y; u, 2)
p=XTX+a2D) ' XTy ;% = (0,°XTX + 1)~}
prediction: p(y*|X,y, z*) ~ N (T 2*, + 02)

= separation of (about
f*/model due to lack of data) and aleatoric uncer-
tainty (irreducible noise from y* = f* + €)
independent noise = recursive Bayesian updates, i.e.
use posterior from last iteration as prior:

p(wlyrj1) = Zp(wlyr;)p(yirilw, yi;5)
wi+h) = f( G )ayj+1axj+l)

Kalman/Bayesian filtering

motion model: zy11 = Fay + € 5 ¢ ~ N(0,%,)

sensor model: v = Hay +ny 5 e ~ N(0,%,)

F, H known and deterministic, KF resembles HMM

Kalman update:  pyy1 = Fuy + Kip1(yer1 — HF py)
Sip1 = (I — K1) (FS FT +5,)

Kalman gain: Ky 1 = (FXFT +S,)HT (H(FSFT +

Y.)HT+3,)7L, compute X, K; offline (indep. of obs.)

BLR = KF with w as hidden vars., F' =1, 03; =0

KF special case of GP with cond. indep. structure

Gaussian processes

instead of random w, think of random responses

f=Xw~N(0,02XXT) st. XXT = K, Kijj = xlx;

Gaussians over functions instead of RVs/points

prior p(f) encodes smoothness ass. on functions

posterior p(f|data) encodes agreement with data

uncertainty, tractable inference for finite marginals

mean func. p, covariance func. k& (BLR for lin. kernel)

prediction: closed form, posterior cov. k' indep. of y4

() = p(x) + ke a(Kaa + 0”1) 7 (ya — pa)

K(x,2') = k(x,2") — ky a(Kaa + JQI)*leZA

sampling from GP: f = [f1, ..., fu] ~ N(0, K,)

product rule = forward sampling (fully sequential):

sampling from univariate Gaussians f, ~ p(fn|fim—1)

opt. kernel params: 1) CV on predictive performance
) Bayesian, i.e. max. marg. likelihood:

0= argmas [ plylf. X)p(f10)df (general

0 = arg ming Slog |[K,(0)] + Sy" K, (0)y (Gaussians)

solve using GD, i.e. 90+ = G(t) — VL)

reduces overfitting, but depends heavily on prior

comp. cost: LSE in |A| unknowns = O(|A|?)

acceleration methods: 1) parallelization (still O(|A]?))

2) local GP methods: only consider 2’ if |k(x,2’)| > 7

3) kernel approx.: Fourier for stationary kernels

4) inducing point: ignore points (e.g. in clusters)

Approximate inference

Variational inference:

for BLR and GPR everything closed form, generally
not the case = need approximations

can evaluate joint p(y,#) but not normalizer Z
replace high-dim. integrals by optimization

p(8ly) = zp(y,0) = q(6|))

¢" = argming K L(q||p) = argminy K'L(qx|[p)

prefer argming K L(p||¢)(p in q), but harder to opt.
q* = argmaxg Ey4[log p(y|0)] — KL(q||p(-))
regularizer: want ¢ close to prior p(-)

Jensen’s inequality = ELBO L(q) < logp(y)

to use SGD to max. L(\), need reparameterization:
a(017) = ¢(e)|Veg(e; N[ 5 e ~ 6,0 = g(e, \)
VaEgmg, [f(0)] = VaEews [ (9(€6;N)] = Eens[Vaf(9)]

Laplace approximation:

2nd-order Taylor expansion around 6 to construct
Gaussian: ¢(0) ~ N(0;0,A71) ; A = —VVlogp(d|y)
Z const. in optimization for 6 and calculation for A
overconfident, does not consider cov. when seeking 0

Markov Chain Monte Carlo (MCMC)

vs. VI: returns accurate result, higher comp. cost

seek to approx. p using samples constructed by a

markov chain (law of large numbers, need () indep.)
Py X, y,x *) E9~p( x|z, 0)] ~ & 32, F(69)

need N > & 53 log 5 for error < e with prob. > 1 -4

create MC with 7 = P(z) = 2 P(y)P(z|y) = £Q(z)

guaranteed by detailed balance

LQ(@)P('[z) = LQ(') Plals’)

Metropolis-Hastings: (perf. highly dependent on R!)

1) given X; = x, sample proposal ' ~ R(X'|X = z)

2) set Xy1q = :1: with prob. a, else X1 =

(") R(z|z')
Q) R(x'|x) }

a = min {1
Gibbs:

1) init. assignment z(9) to all variables

2) fix observed vars. Xp to their observed values xp
3) either random order (detailed balance): pick ¢ unif.
at random, update z; ~ P(X;|v;) or practical variant
(no det. bal. but has correct 7): set z(*) = z(t=1),
then update all x; except those in B

Z =Y . Q(X; =z,v;) is easy to calculate = sampling
from X; given assignment to all other vars. is efficient
z® dep. on (=1 = loln, Hoeffding’s no longer hold
only ergodic MC limn_yo0 % >.; f(25) = Egr[f ()]
MCMC for continuous RVs:

proposal distr. either random (simple, uninformed) or
in gradient direction (MALA):

R(x'|x) ~ N (252 — TVf(:U) 271)
a:min{l,ef(z) }forp—f —f(@)

converges to m for f convex < p log-concave

requires access to full energy func. f

= SGLD:

replace full gradient by unbiased estimate (mini-
batch), always accept but reduce step size 7; over time
= SGD + Gaussian noise, converges for 1, € O(t /%)




Bayesian deep learning

heteroscedastic noise: noise depends on input

= model mean and (log) var as outputs of NN
p(ylz,0) = N(y; fi(z,0), ef2(@0))

MAP est.: 6 = arg ming —logp(0) — >, log p(yilx;, 0)
prediction p(y*| X, y,2*) = [p(y*|z*,0)p(0| X, y)db
integrals intractable = approx1mate 1nference:
Bayes by backprop:

I % Egeg(plp(u71e*,0)] % & 50y, 09))
= mixture of Gaussians

B[] ~ ia*) = £ 3, u(a*,00))

Var(llh) = + Eg[Var(y*|z*, 0)]

~ +%zj()’(.’lj*,9(j))
MCMC for BNNs:

apply SGLD, MALA (only need stoch. grads of joint)
= produce sequence 0, ... 0(1) impossible to store
all samples/models, hard to determine burn-in

1) subsampling: keep only a subset of m < T models
2) Gaussian approx.: running averages for p;, a?
specialised inference techniques for BNNs:

dropout regularization: randomly ignore hidden units
during each SGD iteration (forward and backprop.)
view as VI: ¢(0|A) = []; pdo(6;) + (1 — p)dx; (6;)
probabilistic ensembles of NNs: variation of 8) shows
uncertainty = bootstrap, get MAP on D; to get )

Active learning

use and aleatoric uncertainty to decide which
data to collect (e.g. where to place sensors)

want points S which max. info gain (NP-hard)
greedy algo./uncertainty sampling: choose xy11 =

arg max, o2 () (only considers epistemic uncertainty)

for heteroscedastic case, need zt41 = argmax, — @
n
as aleatoric uncertainty no longer const. in x

Bayesian optimization (exploration-exploitation)

use that similar alternatives have similar performance
multi-armed bandits: pick x¢, observe y; = f(x¢) + €&
cum. regr. Ry =), max, f(z)— f(z;) ; want % —0

acquisition functions:

GP-UCB: focus exploration on regions where upper
conf. bound > best lower conf. bound

xy = arg maxy p—1(x) + Bror—1(x) (gen. non-convex)
how to choose (£,7, naturally trades off e-e
Thompson: & = arg max, f(z) ; f ~ p(flw1, y14)
randomness in f enough to trade off e-e

Markov decision processes (MDPs)

states, actions, transition probas. and reward function
V(@) = r(e, 7(2) + 7 S0 P(@/|2, w(@)) V(')

can compute V™ = r"4+~T7V™ exactly by solving LSE
approx. by fixed point iteration: V™ = r™ +~4T7V,T
converges exponentially

every V induces a (greedy) m and vice versa:

V ~s mg(z) = argmax, r(z,a) +v >, P(2'|z,a)V(2)
Bellman thm: 7 optimal < greedy w.r.t. induced V
policy iteration: init 7, until convergence:

1) comp. V™ (z) 2) comp. 7y w.r.t. V™ 3) m =m,

V™ monotonically increases, converges to optimal 7
complexity: need to solve LSE for V

value iteration: Bellman+FPI Vj(x) = max, r(z,a)
Qi(z,a) = max,r(z,a) + v, P(a'|x,a)Vi(z)

Vi(z) = max, Q¢(x, a), break if ||V — Vi_1|loo < €

~» g, converges to e-optimal 7 in O(Inl/e) iterations
POMDP: (control. HMM); P(X;y1|Xy, Ar), P(Yi|Xy)
very powerful but generally extremely intractable

= belief-state MDPs (use Bayesian filtering):

beliefs P(X;|y1.t) given noisy observations y

bip1(z) = P(Xpp1 = @ly1es1) = 3 P(yes1]a) P(Xpq1 =
zlyre) 5 r(be, ar) = 32, be(@)r(z, ar)

most belief states never reached

dyn. progr., point based methods, policy grads

Reinforcement learning

credit assignment problem: which a; got me to this r?
data not iid, depends on our actions = e-e dilemma
model-based RL: learn MDP from data

estimate P(2'|z,a),r(z,a) e.g. by MLE (counts)
store 1,P; solve est. MDP up to |X| - |A]| times
e-greedy: random a; with prob. €, else best a;

to optimal 7, considers suboptimal actions

conv.

Ry4z: 7optimism in the face of uncertainty”

init r(x,a) = Rpmaz, P(x*|z,a) =1, 7 opt. w.r.t. r, P
repeat: exec. 7, obs. (z,a), update r, est. P(z'|z,a),
recompute 7 w.r.t. r, P after n € O(== 3”‘”” log %) obs.
model-free RL: est. V™ directly given 7r

TD-learning: (on-policy), init V', © ~ (z,a,r,2’)
V@) = (1 - )V (@) + aqlr + 7V (2'))

i.e. use bootstrapping, one-sample est. of long-term r
Q-learning: (off-policy) a ~ (x,a,r,z’)

Qiy1(z,a) = (1- at)Qt(w a)+ai(r+ymaxy Qi(2',a’))
choose Qo(z,a) = fmez 2 [T, (1 — o)™ L for e-e tradeoff
large state spaces: learn approx. V(z;0),Q(x,a;0)
neural-fitted Q-iteration (DQN): collect dataset D
L(8) = X e p(r +ymaxy Q(2', d;0°%) — Q(,a;6))?
max. bias, too optimistic about noisy est. of Q
DDQN: decouple max.: a*(f) = arg max, Q(2’,d’;0)
L(8) = X ep(r +1Q(, a*(0);0°) — Q(z, a;0))?
large action spaces: policy search, learn 7(x; )

1) policy gradients: J(§) = L > (7)) (on-policy)
VJ(0) = VErry[r(7)] = VE r, [r(7)V log m(7)]
MDP structure = VE, ., [r(7) Y, Vlog m(as|xt; 0)]
unbiased but very large variance = baselines:

VJ(Q) = VETNWG [Zz ’yt(Gt — bt)V IOg 7r(at|act; 9)]

eg Gr=> ,_, A =ty rews-to-go, by = % > Gy

2) actor-critic: (non-episodic)

v'](en) = E(x,a)wm; [Q(QZ, a; GQ)V log W(a’m; 0#)]

Or < 0 +niQ(x,a;00)Viogm(alx;0r) ; Og <+ Og —
ne(Q(x,a;0q) —r —vQ(2', ("5 0);0q))VQ(x, a; 0q)
off-policy AC: (DDPG, resp. TD3 to avoid max. bias)
L(0g) = 3. p(r-+1Q(a’, (s 0,):624) Qi a: )
VJ(0r) = Epnp[VQ(x, m(x50);60)] (1 e. w.r.t. mg)
only for determin. m, add action noise for exploration
random. 7: A use reparam. to pull Vg, _ into E,r(z.0,)
soft AC: Jy(0) = J(0) + A\H (mp) (entropy regulariz.)
model-based deep RL: smaller sample complexity
MPC: maxg,.. >, V7 (ze, ar) st x1 = f(xg, ar)
finite horizon, unroll: maxg,,. , , > .Y r(zr(arr-1),ar)
analytic grads local min., exploding/vanishing grads
use heuristics, e.g. random shooting

sparse 1, add (off-policy) V estimate +y7V (x4 5)
unknown (f, r): regression (Bayesian learning, e-e)




