
General definitions

N (y; Σ, µ) = 1√
(2π)n|Σ|

exp

(
− 1

2(y − µ)TΣ−1(y − µ)

)
need only n2 params for joint instead of 2n − 1
entropy H(q) = −

∫
q(θ) log q(θ)dθ = Eθ∼q

[
− log q(θ)

]
mutual info I(X;Y ) = H(X)−H(X|Y ) (symmetric)

KL div. KL(q||p) =
∫
q(θ) log q(θ)

p(θ)dθ = Eθ∼q
[

log q(θ)
p(θ)

]
non-negative, zero iff q and p agree a.e., not symmetr.
Jensen’s inequality: g(E[X]) ≤ E[g(X)] for g convex,
else flipped (e.g. log(E[X]) ≥ E[log(X)]
Hoeffding’s inequality: for f bounded in [0, C]

p
(
|Ep[f(X)]− 1

N

∑
i f(xi)| > ε

)
≤ 2 exp(−2Nε2/C2)

Robins-Monro conditions:
∑

t εt =∞,
∑

t ε
2
t <∞

Bayesian linear regression (BLR)
BLR makes same assumptions as ridge regression:
cond. idd Gaussian noise, Gaussian prior
RR = MAP estimation for LR (y = wTx), i.e. returns
single model, no uncertainty qualification (collapses all
uncertainty onto mode of posterior p(w|X, y))
BLR reasons about full p(w|X, y) ∼ N (y;µ,Σ)
µ = (XTX + σ2

nI)−1XT y ; Σ = (σ−2
n XTX + I)−1

prediction: p(y∗|X, y, x∗) ∼ N (µTx∗, x∗TΣx∗ + σ2
n)

⇒ separation of epistemic uncertainty (about
f∗/model due to lack of data) and aleatoric uncer-
tainty (irreducible noise from y∗ = f∗ + ε)
independent noise ⇒ recursive Bayesian updates, i.e.
use posterior from last iteration as prior:
p(w|y1:j+1) = 1

Z p(w|y1:j)p(yj+1|w, y1:j)

w(j+1) = f(w(j), yj+1, xj+1)

Kalman/Bayesian filtering
motion model: xt+1 = Fxt + εt ; εt ∼ N (0,Σx)
sensor model: yt = Hxt + ηt ; ηt ∼ N (0,Σy)
F,H known and deterministic, KF resembles HMM
Kalman update: µt+1 = Fµt +Kt+1(yt+1 −HFµt)

Σt+1 = (I −Kt+1)(FΣtF
T + Σx)

Kalman gain: Kt+1 = (FΣtF
T + Σx)HT (H(FΣtF

T +

Σx)HT+Σy)
−1, compute Σt,Kt offline (indep. of obs.)

BLR = KF with w as hidden vars., F = I, σ2
x = 0

KF special case of GP with cond. indep. structure

Gaussian processes
instead of random w, think of random responses
f = Xw ∼ N (0, σ2

pXX
T ) s.t. XXT = K, Kij = xTi xj

Gaussians over functions instead of RVs/points
prior p(f) encodes smoothness ass. on functions
posterior p(f |data) encodes agreement with data
uncertainty, tractable inference for finite marginals
mean func. µ, covariance func. k (BLR for lin. kernel)
prediction: closed form, posterior cov. k′ indep. of yA
µ′(x) = µ(x) + kx,A(KAA + σ2I)−1(yA − µA)
k′(x, x′) = k(x, x′)− kx,A(KAA + σ2I)−1kTx,A
sampling from GP: f = [f1, ..., fn] ∼ N (0,Kx)
product rule ⇒ forward sampling (fully sequential):
sampling from univariate Gaussians fn ∼ p(fn|f1:n−1)
opt. kernel params: 1) CV on predictive performance
2) Bayesian, i.e. max. marg. likelihood:
θ̂ = arg maxθ

∫
p(y|f,X)p(f |θ)df (general)

θ̂ = arg minθ
1
2 log |Ky(θ)|+ 1

2y
TKy(θ)y (Gaussians)

solve using GD, i.e. θ(t+1) = θ(t) − yt∇L(θ)
reduces overfitting, but depends heavily on prior
comp. cost: LSE in |A| unknowns ⇒ O(|A|3)
acceleration methods: 1) parallelization (still O(|A|3))
2) local GP methods: only consider x′ if |k(x, x′)| > τ
3) kernel approx.: Fourier for stationary kernels
4) inducing point: ignore points (e.g. in clusters)

Approximate inference
Variational inference:
for BLR and GPR everything closed form, generally
not the case ⇒ need approximations
can evaluate joint p(y, θ) but not normalizer Z
replace high-dim. integrals by optimization
p(θ|y) = 1

Z p(y, θ) ≈ q(θ|λ)
q∗ = arg minqKL(q||p) = arg minλKL(qλ||p)
prefer arg minqKL(p||q)(p in q), but harder to opt.
q∗ = arg maxq Eθ∼q[log p(y|θ)]−KL(q||p(·))
regularizer: want q close to prior p(·)
Jensen’s inequality ⇒ ELBO L(q) ≤ log p(y)
to use SGD to max. L(λ), need reparameterization:
q(θ|λ) = φ(ε)|∇εg(ε;λ)|−1 ; ε ∼ φ, θ = g(ε, λ)
∇λEθ∼qλ [f(θ)] = ∇λEε∼φ[f(g(ε;λ))] = Eε∼φ[∇λf(g)]

Laplace approximation:

2nd-order Taylor expansion around θ̂ to construct
Gaussian: q(θ) ∼ N (θ; θ̂,Λ−1) ; Λ = −∇∇ log p(θ̂|y)
Z const. in optimization for θ̂ and calculation for Λ
overconfident, does not consider cov. when seeking θ̂

Markov Chain Monte Carlo (MCMC)
vs. VI: returns accurate result, higher comp. cost
seek to approx. p using samples constructed by a
markov chain (law of large numbers, need θ(i) indep.)

p(y∗|X, y, x∗) = Eθ∼p(·|X,y)[p(y
∗|x∗, θ)] ≈ 1

N

∑
i f(θ(i))

need N ≥ C2

2ε2
log 2

δ for error ≤ ε with prob. ≥ 1− δ
create MC with π = P (x) = 1

ZP (y)P (x|y) = 1
ZQ(x)

guaranteed by detailed balance:
1
ZQ(x)P (x′|x) = 1

ZQ(x′)P (x|x′)
Metropolis-Hastings: (perf. highly dependent on R!)
1) given Xt = x, sample proposal x′ ∼ R(X ′|X = x)
2) set Xt+1 = x′ with prob. α, else Xt+1 = x

α = min
{

1, Q(x′)R(x|x′)
Q(x)R(x′|x)

}
Gibbs:
1) init. assignment x(0) to all variables
2) fix observed vars. XB to their observed values xB
3) either random order (detailed balance): pick i unif.
at random, update xi ∼ P (Xi|vi) or practical variant
(no det. bal. but has correct π): set x(t) = x(t−1),
then update all xi except those in B
Z =

∑
xQ(Xi = x, vi) is easy to calculate⇒ sampling

from Xi given assignment to all other vars. is efficient
x(t) dep. on x(t−1) ⇒ loln, Hoeffding’s no longer hold
only ergodic MC limN→∞

1
N

∑
i f(xi) = Ex∼π[f(x)]

MCMC for continuous RVs:
proposal distr. either random (simple, uninformed) or
in gradient direction (MALA):
R(x′|x) ∼ N (x′;x− τ∇f(x), 2τI)
α = min

{
1, ef(x)−f(x′)

}
for p = 1

Z e
−f(x)

converges to π for f convex ⇔ p log-concave
requires access to full energy func. f
⇒ SGLD:
replace full gradient by unbiased estimate (mini-
batch), always accept but reduce step size ηt over time
⇒ SGD + Gaussian noise, converges for ηt ∈ O(t−1/3)
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Bayesian deep learning
heteroscedastic noise: noise depends on input
⇒ model mean and (log) var as outputs of NN
p(y|x, θ) = N (y; f1(x, θ), ef2(x,θ))
MAP est.: θ̂ = arg minθ − log p(θ)−

∑
i log p(yi|xi, θ)

prediction p(y∗|X, y, x∗) =
∫
p(y∗|x∗, θ)p(θ|X, y)dθ

integrals intractable ⇒ approximate inference:
Bayes by backprop:

llh
VI
≈ Eθ∼q(·|λ[p(y∗|x∗, θ)]

MC
≈ 1

m

∑
j p(y

∗|x∗, θ(j))
⇒ mixture of Gaussians
E[llh] ≈ µ̄(x∗) = 1

m

∑
j µ(x∗, θ(j))

Var(llh) = Var(Ey[y∗|x∗, θ]) + Eθ[Var(y∗|x∗, θ)]
≈ 1

m

∑
j(µ(x∗, θ(j))− µ̄(x∗))2 + 1

m

∑
j σ(x∗, θ(j))

MCMC for BNNs:
apply SGLD, MALA (only need stoch. grads of joint)
⇒ produce sequence θ(1), ..., θ(T ), impossible to store
all samples/models, hard to determine burn-in
1) subsampling: keep only a subset of m < T models
2) Gaussian approx.: running averages for µi, σ

2
i

specialised inference techniques for BNNs:
dropout regularization: randomly ignore hidden units
during each SGD iteration (forward and backprop.)
view as VI: q(θ|λ) =

∏
j pδ0(θj) + (1− p)δλj (θj)

probabilistic ensembles of NNs: variation of θ(j) shows
uncertainty ⇒ bootstrap, get MAP on Dj to get θ(j)

Active learning
use epistemic and aleatoric uncertainty to decide which
data to collect (e.g. where to place sensors)
want points S which max. info gain (NP-hard)
greedy algo./uncertainty sampling: choose xt+1 =

arg maxx σ
2
t (x) (only considers epistemic uncertainty)

for heteroscedastic case, need xt+1 = arg maxx
σ2
f (x)

σ2
n(x)

as aleatoric uncertainty no longer const. in x

Bayesian optimization (exploration-exploitation)
use that similar alternatives have similar performance
multi-armed bandits: pick xt, observe yt = f(xt) + εt
cum. regr. RT =

∑
t maxx f(x)−f(xt) ; want RT

T → 0

acquisition functions:
GP-UCB: focus exploration on regions where upper
conf. bound ≥ best lower conf. bound
xt = arg maxx µt−1(x) + βtσt−1(x) (gen. non-convex)
how to choose βt?, naturally trades off e-e
Thompson: xt = arg maxx f̃(x) ; f̃ ∼ p(f |x1:t, y1:t)
randomness in f̃ enough to trade off e-e

Markov decision processes (MDPs)
states, actions, transition probas. and reward function
V π(x) = r(x, π(x)) + γ

∑
x′ P (x′|x, π(x))V π(x′)

can compute V π = rπ+γT πV π exactly by solving LSE
approx. by fixed point iteration: V π

t = rπ + γT πV π
t−1

converges exponentially
every V induces a (greedy) π and vice versa:
V  πg(x) = arg maxa r(x, a) + γ

∑
x′ P (x′|x, a)V (x′)

Bellman thm: π optimal ⇔ greedy w.r.t. induced V
policy iteration: init π, until convergence:
1) comp. V π(x) 2) comp. πg w.r.t. V π 3) π = πg
V π monotonically increases, converges to optimal π
complexity: need to solve LSE for V
value iteration: Bellman+FPI V0(x) = maxa r(x, a)
Qt(x, a) = maxa r(x, a) + γ

∑
x′ P (x′|x, a)Vt(x

′)
Vt(x) = maxaQt(x, a), break if ‖Vt − Vt−1‖∞ ≤ ε
 πg, converges to ε-optimal π in O(ln1/ε) iterations
POMDP: (control. HMM); P (Xt+1|Xt, At), P (Yt|Xt)
very powerful but generally extremely intractable
⇒ belief-state MDPs (use Bayesian filtering):
beliefs P (Xt|y1:t) given noisy observations y
bt+1(x) = P (Xt+1 = x|y1:t+1) = 1

ZP (yt+1|x)P (Xt+1 =
x|y1:t) ; r(bt, at) =

∑
x bt(x)r(x, at)

most belief states never reached
dyn. progr., point based methods, policy grads

Reinforcement learning
credit assignment problem: which ai got me to this r?
data not iid, depends on our actions ⇒ e-e dilemma
model-based RL: learn MDP from data
estimate P (x′|x, a), r(x, a) e.g. by MLE (counts)
store r,P; solve est. MDP up to |X| · |A| times
ε-greedy: random at with prob. εt, else best at
conv. to optimal π, considers suboptimal actions

Rmax: ”optimism in the face of uncertainty”
init r(x, a) = Rmax, P (x∗|x, a) = 1, π opt. w.r.t. r, P
repeat: exec. π, obs. (x, a), update r, est. P (x′|x, a),

recompute π w.r.t. r, P after n ∈ O(R
2
max
ε2

log 1
δ ) obs.

model-free RL: est. V π directly given π
TD-learning: (on-policy), init V π

0 , π  (x, a, r, x′)
V π
t+1(x) = (1− αt)V π

t (x) + αt(r + γV π
t (x′))

i.e. use bootstrapping, one-sample est. of long-term r
Q-learning: (off-policy) a (x, a, r, x′)
Qt+1(x, a) = (1−αt)Qt(x, a)+αt(r+γmaxa′ Qt(x

′, a′))
choose Q0(x, a) = Rmax

1−γ
∏
t(1− αt)−1 for e-e tradeoff

large state spaces: learn approx. V (x; θ), Q(x, a; θ)
neural-fitted Q-iteration (DQN): collect dataset D

L(θ) =
∑
·∈D(r + γmaxa′ Q(x′, a′; θold)−Q(x, a; θ))2

max. bias, too optimistic about noisy est. of Q
DDQN: decouple max.: a∗(θ) = arg maxa′ Q(x′, a′; θ)

L(θ) =
∑
·∈D(r + γQ(x′, a∗(θ); θold)−Q(x, a; θ))2

large action spaces: policy search, learn π(x; θ)

1) policy gradients: J(θ) = 1
m

∑
j r(τ

(j)) (on-policy)
∇J(θ) = ∇Eτ∼πθ [r(τ)] = ∇Eτ∼πθ [r(τ)∇ log πθ(τ)]
MDP structure ⇒ ∇Eτ∼πθ [r(τ)

∑
t∇ log π(at|xt; θ)]

unbiased but very large variance ⇒ baselines:
∇J(θ) = ∇Eτ∼πθ

[∑
i γ

t(Gt − bt)∇ log π(at|xt; θ)
]

e.g. Gt =
∑

t′=t γ
t′−trt′ rews-to-go, bt = 1

T

∑
tGt

2) actor-critic: (non-episodic)
∇J(θπ) = E(x,a)∼πθ [Q(x, a; θQ)∇ log π(a|x; θπ)]
θπ ← θπ + ηtQ(x, a; θQ)∇ log π(a|x; θπ) ; θQ ← θQ −
ηt(Q(x, a; θQ)− r − γQ(x′, π(x′; θπ); θQ))∇Q(x, a; θQ)
off-policy AC: (DDPG, resp. TD3 to avoid max. bias)

L(θQ) =
∑
·∈D(r+γQ(x′, π(x′; θπ); θoldQ )−Q(x, a; θQ))2

∇J(θπ) = Ex∼µ[∇Q(x, π(x; θ); θQ)] (i.e. w.r.t. πG)
only for determin. π, add action noise for exploration
random. π: A use reparam. to pull∇θπ into Ea∼π(x,θπ)

soft AC: Jλ(θ) = J(θ) + λH(πθ) (entropy regulariz.)
model-based deep RL: smaller sample complexity
MPC: maxa0:∞

∑
t γ

tr(xt, at) s.t. xt+1 = f(xt, at)
finite horizon, unroll: maxat:t+H−1

∑
τ γ

τr(xτ (at:τ−1), aτ )
analytic grads local min., exploding/vanishing grads
use heuristics, e.g. random shooting
sparse r, add (off-policy) V estimate +γHV (xt+H)
unknown (f, r): regression (Bayesian learning, e-e)
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