
1

Probabilistic Artificial Intelligence

Multivariate Gaussians N (y;Σ,µ)
1

(2π)n/2
√
|Σ|

exp
(
−1

2
(y−µ)>Σ

−1(y−µ)

)
σi j = E[(Xi − µi)(X j − µ j)], σ2

i = V(Xi),
Xi ⊥ X j ⇔ σi j = 0, Joint distribution over n
variables requiresO(n2) parameters

Gaussian Conditional Distribution
p(XA|XB=xb)=N (µA|B,ΣA|B)
µA|B=µA+ΣABΣ

−1
BB(xB−µB) ΣA|B=ΣAA−ΣABΣ

−1
BBΣBA

Mutliples of Gaussians
X ∼ N (µV ,ΣVV), Y = MX, M ∈ Rm×d, then
Y∼N (MµV ,MΣVV MT)

Sums of Gaussians
X∼N (µV ,ΣVV), X ′∼N (µ ′V ,Σ

′
VV), Y =X+X ′

then Y ∼N (µV +µ ′V ,ΣVV +Σ′VV)→ not the case
for product. Sum of Gaussian distributed RV is
Gaussian distributed. The product of Gaussian
distributed RV is NOT Gaussian distributed (but the
product of Gaussian PDF is Gaussian).
Useful Math
Probabilities

E[X]=
∫

x·p(x)dx or ∑xx·p(x)
Tower Law E[X]=Ey[Ex[X|Y]]
V[X]=E[(X−µX)

2]=E[X2]−E[X]2
Vx[b+cX]=c2Vx[X]
Cov[X, Y] = E[(X − E(X)(Y − E(Y))] =
E[XY]−E[X]E[Y]
V[X+Y]=V[X]+V[Y]+2Cov[X,Y]
Change of variables: fy(y)= fx(x)|dg(x)/dx|−1

Jensen’s inequality f (E[X])≤E[f (X)] f convex
f (E[X])≥E[f (X)] f concave
Robbins Monro (RM) conditions If sequence εt
satisfies ∑tεt =∞ and ∑tε

2
t <∞ then it will converge

to optimum with probability 1. Can be used to check
if learning rate α will lead to optimum
Entropy and Mutual Information

H(X)=Ex∼p(x)[−logP(X)]=−∑
n
i=1P(xi)logP(xi)

H(X,Y)=H(Y,X) H(X ·Y)=H(X)+H(Y)
H(X,Y)≤H(X)+H(Y) H(X)=EX [I(x)]
H(X|Y)=Ey∼p(y)[H(X|Y =y)]=H(X,Y)−H(Y)
I(X;Y)=KL(p(X,Y)‖ p(X)p(Y))
I(X;Y)=H(X)−H(X|Y)=I(Y ;X)≤I(X;Y,Z)
If q is Gaussian: H(q)= 1

2 ln|2πeΣ| q∼N (µ,Σ)
If Y =X+ε then H(Y |X)=H(ε)

Bayesian Learning
We can write X = aY + b+ ε if X,Y are jointly
Gaussian
Ridge Regression

Linear and Ridge Regression fail when multicolin-
earity, i.e. when more than two explanatory variables
are highly linearly related
ŵ=argminw∑

n
i=1(yi−wT xi)

2+λ ||w||22
ŵ=(XT X+λI)−1XT y
Ridge is the same as finding the MAP parameter
estimate assuming noise is (cond.) iid Gaussian and
prior is Gaussian. Ridge can be derived from BLR
by only taking the mode of the posterior
ŵ=argmaxwP(w)ΠiP(yi|xi,w)
wMAP=σ−2

y (σ−2
w I+σ−2

y XT X)−1XT y
Bayesian Linear Regression (BLR) O(nd2)

Pr: p(w)=N (0,σ2
pI) ε=N (0,σ2

n I)
Li: p(y|x,w,σn)=N (y;wT x,σ2

n)≡y=wT x+ε

Po: p(w|X,y)=N (w;µ̄,Σ̄) has closed form
µ̄=(XT X+σ2

n I)−1XT y Σ̄=(σ−2
n XT X+I)−1

BLR is the same as averaging all w acc. to posterior
For test point x∗, f ∗=wT x∗

p(f ∗|X,y,x∗)=N (µ̄T x∗,x∗T Σ̄x∗)
p(y∗|X,y,x∗) =N (µ̄T x∗,x∗T Σ̄x∗+σ2

n) Epistemic
(lack of data) and Aleatoric (noise) uncertainties
captured
Online updating: XT

newXnew = XT X + xi+1xT
i+1

Xnewynew=Xy+yt+1xt+1

Choosing hyperparameters λ̂ =σ̂2
n/σ̂2

p via cross-
validation. Estimate σ̂2

n =
1
n ∑

n
i=1(yi−ŵT xi)

2, then
solve for σ̂2

p . Otherwise, use marginal likelihood.
Kalman Filters (KF)

Assume conditional linear Gaussian dependencies be-
tween states (X) and observations (Y). Xt+1⊥y1:t|Xt
Motion model: Xt+1=FXt+εt εt∼N (0,Σx)
Sensor model: Yt =HXt+ηt ηt∼N (0,Σy)
Bayesian Filtering in KFs
Update: µt+1=

σ2
y µt+(σ2

t +σ2
x)yt+1

σ2
t +σ2

x +σ2
y

σ2
t+1=

(σ2
t +σ2

x)σ
2
y

σ2
t +σ2

x +σ2
y

BLR is a form of KF
Gaussian Processes (GP)

GP is a normal distribution over functions
GP with linear kernel = BLR
Prediction gives closed form formulas. Posterior
covariance doesn’t depend on the observations y.
Exact computation requires O(n3) but speedup
with parallelism, local GP methods, kernel function
approximations, inducing point methods

Covariance (kernel) functions
Kx,x′=φ(x)T φ(x′) k(x,x′)=Cov(f (x), f (x′))
Symmetric: k(x,x′)=k(x′,x) ∀x,x′
Positive semi-definite: xT Kx≥0⇔λK≥0∀x∈ R|A|
Composition rules 1. k(x,x′)= k1(x,x′)+k2(x,x′)
2. k(x,x′)=k1(x,x′)·k2(x,x′) 3. k(x,x′)=c·k1(x,x′)
for c > 0 4. k(x, x′) = f (k1(x, x′)) with f a
polynomial (with positive coefficient) or exponential
Stationary if: k(x,x′)=k(τ) with τ=x−x′
Isotropic if: k(x,x′)=k(τ) with τ=‖x−x′‖2
RBF kernel is both Stationary and Isotropic
If RBF bandwidth h large→ smooth samples
Optimizing kernel hyperparameters
Max. the marginal likelihood θ̂ =argmaxθP(y|X,θ)
Integrate instead of optimizing prevents overfitting
Kernel Function ApproximationO(nm2+m3)

Random Fourier Features interpret kernel as
expectation. Requires a stationary kernel and a
randomized feature map. Such a kernel has a Fourier
transform. Approximates kernel function uniformly
well, wasteful.
Bochner theorem A stationary kernel is positive-
definite⇔ its Fourier transform is non-negative
Inducing point methods O(n)

Assumes f ∗⊥ f |u, training f , response f ∗
p(f ∗, f)≈q(f ∗, f)=

∫
q(f ∗|u)q(f |u)p(u)du

SoR approximation qSoR(f |u) has the same mean
as p(f |u) but variance is set to 0
Approximate Inference

Laplace Approximation uses a Gaussian approx-
imation to the posterior distribution obtained from a
second-order Taylor expansion around the posterior
mode. Lead to poor approximation if p has multiple
modes.
Stochastic Gradient Descent converges to (local)
minimum if learning rate satisfies RM conditions
Variational Inference (VI)

Approx. unnormalized distribution p by a simple
(tractable) distribution q which depends on some
parameters λ : p(θ |y)= 1

Z p(θ ,y)≈q(θ |λ)
Only twice as expensive as MAP inference for
diagonal q. Only need to be able to differentiate the
(unnormalized) joint proba. density p and q. The
quality of inference is hard to analyze.
Kullback–Leibler Divergence
KL(q‖ p)=Eθ∼q[log q(θ)

p(θ)]=
∫

q(θ)log q(θ)
p(θ)dθ≥0

KL(q‖ p)=0⇔ p=q
KL(q‖ p) 6=KL(p‖q)⇒ KL is not a distance
argminqKL(q‖ p)=argmaxqL(λ) (c.f. ELBO)

KL(q‖ p): backw., exclusive (underestimates, if we
have two modes, only one of them will be used)
KL(p‖q): forw., inclusive (overestimates)
Evidence Lower Bound (ELBO)
L(λ)=Eθ∼q(·|λ)[logp(y|θ)]−KL(qλ ||p(·))
L(λ)≤ logp(y), where p(y) is the evidence
Can calculate ∇L via the following trick
Reparametrization Trick We want the ex-
pectation of the ELBO to depend on an as-
sumed distribution φ and not on λ such that:
∇λEθ∼qλ

[f (θ)]=Eε∼φ [∇λ f (g(ε;λ))]
Makov Chain Monte Carlo (MCMC)

Approx. unnormalized distribution via sampling.
Hoeffding’s inequality prob. of error decreases
exp. in N.
Problem is that normalizing factor Z is in-
tractable. Use ergodic MC (i.e. every states
can be reached from every states in a finite
number of steps) that has stationary distribu-
tion π(x) = P(X) = 1

Z Q(X). Ergodic MC has
a unique limN→∞P(XN =x)=π(x)>0 ∀x and it is
independent of the initial state.
If MC satisfies the detailed balance equation
(DBE) then MC has π(x)=P(X)
DBE: 1

Z Q(x)P(x′|x)= 1
Z Q(x′)P(x|x′)

Markov Chain Xt+1⊥X1:t−1|Xt
Metropolis-Hasting MCMC old state: x
1. Proposal x′∼R(X ′|X=x) proposed state: x′
2. P(X ′=x′|X =x)=α P(X ′=x|X =x)=1−α

Acceptance probability α=min
(

1,Q(x′)R(x|x′)
Q(x)R(x′|x)

)
Use Gibbs sampling, from Xi given all other, to
specify the proposal distribution. Random order
Gibbs satisfies DBE, practical variant doesn’t but
still has correct π(x)
Variational inference scales better than sampling
techniques like Metropolis-Hasting.
Because joint sample at time t depends on sample at
t−1, the law of large numbers doesn’t apply. We
use the following theorem to compute expectation
with MCMC instead:
Ergodic Theorem with D a finite state space
limN→∞

1
N ∑

N
i=1 f (xi)=∑x∈Dπ(x) f (x)=Ex∼π f (x)

With continuous RVs, use MALA for proposal dis-
tribution, which converges to π(x) for log-concave
distributions, e.g. Bayesian logistic regression
p(x)= 1

Z exp(− f (x)) is log-concave if the energy func-
tion f (x) is convex. For large data sets, use SGLD,
which convergences to π(x) if ηt ∈ O(t−1/3).
MALA and SGLD can be improved by adding
momentum, resulting in HMC (remembring what
the gradient was before)

Model-based RL 2

Bayesian Deep Learning
Consider nonlinear dependencies of the likelihood
function parameters on the inputs.
Heteroscedastic noise depends on input
Bayesian Neural Network (BNN)

Models are the output of the network, MAP param-
eter estimate: θ̂ = argminθL(θ), Gaussian pr. on
the weight are equiv. to applying weight decay.
Approximate inference for BNNs

VI for BNNs aka Bayes-by-backpropagation. Pre-
diction p(y∗|x∗,x1:n,y1:n)≈Eθ∼q(·|λ)[p(y∗|x∗,θ)]≈
1
m ∑

m
j=1 p(y∗|x∗,θ (j)) i.e. draw m sets of weights

from posterior and average the neural network
predictions. Catches both aleatoric and epistemic
uncertrainties. Optimize ELBO via SGD.
MCMC for BNNs Only requires stochastic gra-
dients of (unnormalized) joint probability, i.e.
the same used for MAP estimation. Prediction
p(y∗|X,y,x∗) ≈ 1

T ∑
T
j=1 p(y∗|x∗,θ (θ)). Problem is

to store all T samples or models: Can use Sub-
sampling, i.e. keep a subset of m snapshots, or
keep track of Gaussian approximation of the
parameters (e.g. SWAG method).
Specialized inference techniques for BNNs
Monte-Carlo Dropout regularization: randomly ig-
nore hidden units during each iteration of SGD with
probability p. Both during training and prediction.
Can be viewed as VI. Probabilistic Ensemble uses
bootstrap sampling, train multiple models on random
subsamples of the data
Active Learning

1. Choose and add the point with the highest
uncertainty to the training set (often the farthest
points from the current evaluation points) 2. Train
on the new training set 3. Repeat Exploration
We want to pick the points to observe f which
maximizes the Information Gain (aka Mutual
Information) F(S) = H(f)− H(f |yS). Problem
F(S) is NP-Hard to optimize. We can use Uncer-
tainty Sampling (greedy) to get near-optimal
result because F(S) is monotone submodu-
lar, i.e. satisfies diminishing returns property:
H(X|Y)≥H(X|Y,Z). It fails for herteroscedastic
cases because it can’t distinguish aleatoric from
epistemic uncertainty. Can use BALD.
Bayesian Optimization

1. Pick next point to evaluate (acc. to the acquisition
function by optimizing it) 2. Update the model
(Bayes’ rule) 3. Repeat Exploration-Exploitation
Bandit task: multiple options with unknown prob-

ability of producing a reward, the goal is to chose
the best option to maximize the overall reward. Idea:
pick points that minimize the Cumulative Regret
Problem is NP-Hard, and we don’t know the best
possible output. We can use GP-UCB acquisition
function: xt =argmaxx∈Dµt−1(x)+βtσt−1(x)
Picks points for which the upper confidence bound
is currently the highest. The higher the estimate
µ, the higher the bound. The higher the un-
certainty σ , the higher the bound. Maximum
information gain γT determines the regret. Lin-
ear: γT = O(d logT), RBF: γT = O((logT)d+1), Matérn (ν > 2):

γT = O(T
d(d+1)

2ν+d(d+1) log T) Thompson Sampling:draw
f̃ ∼P(f |x1:t ,y1:t),xt+1 = argmaxx∈D f̃ (x) , the randomness of
f̃ is sufficient to trade exploraiton and exploitation.
Markov Decision Processes (MDP)

Vπ(x)=∑x′P(x′|x,π(x))[r(x,π(x),x′)+γ Vπ(x′)]
πg=argmaxa∑x′P(x′|x,a)[r(x,a,x′)+γVπ(x′)]
Bellman’s Theorem
Policy is optimal⇔ greedy w.r.t. its induced Vπ

Policy iteration converges in O(n2m
1−γ

) iterations
Value iteration converges in O(ln 1

ε
) iterations of

complexity O(nms) per iteration
Value function for optimal policy V∗(x) =
maxa[r(x,a)+γ∑xP(x′|x,a)V∗(x′)]
POMDP (aka controlled HMM) Generalization of
MDP when partially observable state Xi via noisy
observation Yi. The agent has a certain belief over
the states. Most belief states are never reached. We
can use Policy gradient methods.
Reinforcement Learning (RL)

Use observed state transitions and rewards to learn
an underlying (unkown) MDP. Data is not iid.
On-policy agent has control over which action to
pick. Can chose to trade exploration-exploitation Off-
policy agent only gets observational data. Online:
after every step, Offline: with replay dataset/batches.
Discount γ: � 1 focused on instant rewards, ≈ 1
less greedy, more on future rewards.
Model-based RL

Learn the MDP and optimize
P(Xt+1|Xt ,A)≈ Count(Xt+1,Xt ,A)

Count(Xt ,A)
r(x,a)≈ 1

Nx,a
∑t:Xt=x,At=aRt

ε-greedy pick random action with proba. ε, pick
best action with proba. 1−ε. Converges to optimal
policy if ε satisfies RM conditions. Problem: doesn’t
quickly eliminate suboptimal actions.
Rmax Algorithm (On-policy) Initialize 1. add fairy tale
state x∗ 2. set r(x,a)=Rmax and P(x∗|x,a)=1 ∀ x,a
3. chose optimal policy. Repeat 4. execute policy
5. update r(x,a) for each visited state-action pair 6.
estimate P(x′|x,a). Until n ∈O(R2

max
ε2 log 1

δ
) observations

Model-free RL
Value func.Vπ(x) and Action-Value func. Qπ(x,a).
Advantage func. Aπ(x, a) = Qπ(x, a) − Vπ(x)
TD-learning use Bootstraping for updating
V(x)←−(1−α)V(x)+α(r+γV(x′))
V∗(x) = maxaQ∗(x,a), estimate Q∗ from samples
Q-learning pick (greedy) a=argmaxaQ(x,a)
Q(x,a)←−(1−α)Q(x,a)+α(r+γ ·maxa′Q(x′,a′))
Converges to optimal Q∗ if α satisfies RM conditions.
Q∗ depends on γ used during training, larger γ leads
to larger Q, larger noise leads to smaller Q value.
TD-learning is On-policy, whereas Q-learning can
be Off-policy.
Large state space: use parametric function ap-
proximation of (action) value function to scale up,
e.g. using Neural Network leads to DQN. (less biased
than Q-learning). Linear function approximation
must be linear in the weights (not in the states).
Large action space: use Policy gradient methods
∇J(θ)=Eτ∼πθ

[(r(τ)−b)∇θ logπθ(τ)]
Note ∇θ logπθ (τ)=

∇θ πθ (τ)
πθ (τ)

For MDP: πθ(τ)=π(a|x;θ)
Gradient ∇J(θ) is unbiased but can have large vari-
ance, using a baseline b>0 reduces variance.
REINFORCE reduces variance by using reward
to go G instead of r(τ).
Actor-critic methods use value function estimate
and policy gradient methods
∇J(θ)=E(x,a)∼πθ

[Q(x,a;θQ)∇logπ(a|x;θ)]
derived by using the discounted state occupancy
measure ρ(x)=∑

∞
t=0γtP(xt =x)

Allows application in online setting
θπ←θπ+ηtQ(x,a;θQ)∇logπ(a|x;θπ)
θQ←θQ−ηt(Q(x,a;θQ)−r−γQ(x′,π(x′,θπ);θQ))∇logπ(a|x;θπ)

Updates improvement guaranteed under compati-
bility conditions
Can reduce variance via baselines (using advan-
tage function) A(x, a) = Q(x, a; θQ) − V(x; θV)
θπ←θπ+ηtA(x,a)∇logπ(a|x;θπ)

Actor-critic can be parallelized
TRPO and PPO are variant of policy gradient/actor-
critic methods. PPO is a heuristic variant of TRPO
widely used in practice.
Advantage function properties
maxaAπ(x,a)≥0 ∀π,x
π∗ is optimal⇔A∗(x,a)≤σ ∀x,a
πg(x)=argmaxaQπ(x,a)=argmaxaAπ(x,a)
Off-policy policy gradient methods If we use dif-
ferentiable approximation of the maximum Q and
differentiable deterministic policy, then we can use
chain rule (i.e. backprop.) to obtain stochastic gra-
dient. Problem, policy gradient methods rely on ran-
domized policies for exploration, we have to inject
additional action noise to encourage exploration in

the off-policy variant, e.g. DDPG. Can encourage ex-
ploration via entropy regularized MDPs, e.g. SAC.
Homeworks

If y=Xw+ε⇒wMLE =(XT X)−1XT y
Kalman filters is like HMM but for continuous
variables. High gain means follow the most recent
measurement. Low gain means follow the model
predictions.
The support of q must be a subset of the support of
p, otherwise KL(q‖ p)→∞

Expected improvement
EI(X)=E[(t−y)+]=

∫
∞

−∞
(t−y)+P(Y |X)dy where

(t−y)+=max(0,t−y)
REINFORCE update:
θ ← θ + αG · E where E = ∇θ π(a|x,θ)

π(a|x,θ) is the
eligibility vector
Linear MDP with feature map φ(x,a) means (1)
∃θ s.t. r(x, a) = 〈φ(x, a), θ〉 (2) P(x′|x, a) =
〈φ(x,a),P(x′)dx′〉 Note: P(x′) doesn’t have to be a
distribution, but P(x′|x,a) should.
Sum rule P(X) + P(X̄) = 1 Product rule P(X,Y,Z) =
P(X|Y,Z)·P(Y,Z)=P(Y |X,Z)·P(X,Z)=P(Z|X,Y)·P(X,Y)
Policy gradient: A={0,1}, π(1|st)=θ and π(0|st)=1−θ,
trajectory τ = (s1,a1,s2,a2,s3,a3), future reward R f uture

t =

∑
H
t=t′ r

′
t i.e. R f uture

1 = r1+r2+r3 but R f uture
3 = r3, we can cal-

culate ∇θ π(1|st)=1 and ∇θ π(0|st)=−1 then ∇θ logπ(1|st)=
∇θ π(1|st)

π(1|st)
and put together Gradient=∑tR

f uture
t ∇θ logπθ (at |st)

