Probabilistic Artificial Intelligence	Bayesian Learning	Covariance (kernel) functions	$KL(q \parallel p)$: backw., exclusive (underestimates, if we
Multivariate Gaussians $\mathcal{N}(\mathbf{y}; \boldsymbol{\Sigma}, \boldsymbol{\mu})$	We can write $X = aY + b + \varepsilon$ if X, Y are jointly	$K_{x,x'} = \phi(x)^T \phi(x') \qquad k(x,x') = Cov(f(x),f(x'))$	have two modes, only one of them will be used)
	Gaussian	Symmetric: $k(x,x') = k(x',x) \forall x,x'$	KL(p q): forw., inclusive (overestimates)
$\frac{1}{(2-y)^{1/2}} \exp\left(-\frac{1}{2}(y-\mu)^{\top}\Sigma^{-1}(y-\mu)\right)$	Ridge Regression	Positive semi-definite: $x^T K x > 0 \Leftrightarrow \lambda_K > 0 \forall x \in \mathbb{R}^{ A }$	Evidence Lower Bound (ELBO) $C(\lambda) = \mathbb{E} \left[\log p(y \theta) \right] = KI(q, p(y))$
$(2\pi)^{n/2}\sqrt{ \Sigma }$ (2)	Linear and Ridge Regression fail when multicolin-	Composition rules 1. $k(x, \overline{x'}) = k_1(\overline{x}, \overline{x'}) + k_2(x, x')$	$\mathcal{L}(\lambda) = \mathbb{E}_{\theta \sim q(\cdot \lambda)}[\operatorname{IOSP}(y \theta)] = \mathcal{K}\mathcal{L}(q\lambda)[p(\cdot)]$
$\sigma_{ij} = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)], \ \sigma_i^2 = \mathbb{V}(X_i),$	earity, i.e. when more than two explanatory variables	2. $k(\bar{x}, x') = k_1(x, x') \cdot k_2(\bar{x}, x')$ 3. $k(x, x') = c \cdot k_1(\bar{x}, x')$	$\mathcal{L}(\lambda) \leq \log p(y)$, where $p(y)$ is the evidence
$X_i \perp X_j \Leftrightarrow \sigma_{ij} = 0$, Joint distribution over <i>n</i>	are highly linearly related	for $c > 0$ 4. $k(x, x') = f(k_1(x, x'))$ with f a	Reparametrization Trick We want the ex-
variables requires $\mathcal{O}(n^2)$ parameters	$\hat{w} = \operatorname{argmin}_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _2^2$	polynomial (with positive coefficient) or exponential	pectation of the ELBO to depend on an as
Gaussian Conditional Distribution	$\hat{w} = (X^T X + \lambda I)^{-1} X^T y$	Stationary if: $k(x,x') = k(\tau)$ with $\tau = x - x'$	sumed distribution ϕ and not on λ such that
$p(X_A X_B=x_b) = \mathcal{N}(\mu_{A B}, \Sigma_{A B})$	Ridge is the same as finding the MAP parameter	Isotropic if: $k(x,x') = k(\tau)$ with $\tau = x-x' _2$	$\nabla_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}}[f(\theta)] = \mathbb{E}_{\varepsilon \sim \phi}[\nabla_{\lambda} f(g(\varepsilon; \lambda))]$
$\mu_{A B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B) \qquad \Sigma_{A B} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$	estimate assuming noise is (cond.) iid Gaussian and	RBF kernel is both Stationary and Isotropic	Makov Chain Monte Carlo (MCMC)
Mutliples of Gaussians	by only taking the mode of the posterior	If RBF bandwidth <i>h</i> large \rightarrow smooth samples	Approx unnormalized distribution via sampling
$X \sim \mathcal{N}(\mu_V \Sigma_{WV}) Y = MX M \in \mathbb{R}^{m \times d}$ then	$\hat{w} = \operatorname{argmax}_{\mathcal{W}} P(w) \Pi_i P(v_i x_i, w)$	May the marginal likelihood \hat{A} – argmax, $P(y X A)$	Hoeffding's inequality prob. of error decreases
$Y \sim \mathcal{N}(M_{H_V} M \Sigma_{M_V} M^T)$	$w_{MAP} = \sigma_{-2}^{-2} (\sigma_{-2}^{-2} I + \sigma_{-2}^{-2} X^T X)^{-1} X^T y$	Integrate instead of optimizing prevents overfitting	exp. in <i>N</i> .
Sume of Gaussians	Bayesian Linear Begression (BLR) $O(m^2)$	Kernel Function Approximation $O(m^2 + m^3)$	Problem is that normalizing factor Z is in
$X \sim \mathcal{N}(\mu_{Y} \Sigma_{YY}) X' \sim \mathcal{N}(\mu' \Sigma') Y - X + X'$	Dayesian Linear negression (DLin) O(na)	Random Fourier Features interpret kernel as	can be reached from every states in a finite
then $Y \sim \mathcal{N}(\mu_V, \Sigma_V V)$, $X \neq \mathcal{I}(\mu_V, \Sigma_V V)$, $Y = X + X$	$Pr: p(w) = \mathcal{N} (0, \sigma_p^2 I) \qquad \qquad \mathcal{E} = \mathcal{N} (0, \sigma_n^2 I)$	expectation. Requires a stationary kernel and a	number of steps) that has stationary distribu-
for product Sum of Gaussian distributed RV is	Li: $p(y x,w,\sigma_n) = \mathcal{N}(y;w^Tx,\sigma_n^2) \equiv y = w^Tx + \varepsilon$	randomized feature map. Such a kernel has a Fourier	tion $\pi(x) = P(X) = \frac{1}{2}O(X)$. Ergodic MC has
Gaussian distributed. The product of Gaussian	Po: $p(w X,y) = \mathcal{N}(w; \bar{\mu}, \Sigma)$ has closed form	transform. Approximates kernel function uniformly	a unique $\lim_{N \to \infty} P(X_N = x) = \pi(x) > 0 \ \forall x$ and it is
distributed RV is NOT Gaussian distributed (but the	$\bar{\boldsymbol{\mu}} = (X^T X + \sigma_n^2 I)^{-1} X^T y \bar{\boldsymbol{\Sigma}} = (\sigma_n^{-2} X^T X + I)^{-1}$	well, wasteful.	independent of the initial state.
product of Gaussian PDF is Gaussian).	BLR is the same as averaging all <i>w</i> acc. to posterior	Bochner theorem A stationary kernel is positive- definite \Leftrightarrow its Fourier transform is non negative	If MC satisfies the detailed balance equation
Useful Math	For test point x^* , $f^* = w^T x^*$	Inducing point methods $O(n)$	(DBE) then MC has $\pi(x) = P(X)$
Probabilities	$p(f^* X,y,x^*) = \mathcal{N}(\bar{\mu}^T x^*, x^{*T} \bar{\Sigma} x^*)$		DBE : $\frac{1}{Z}Q(x)P(x' x) = \frac{1}{Z}Q(x')P(x x')$
$\mathbb{E}[X] = \int x \cdot p(x) dx \text{or} \sum_{x} x \cdot p(x)$	$p(y^* X, y, x^*) = \mathcal{N}(\bar{\mu}^T x^*, x^{*T} \bar{\Sigma} x^* + \sigma_n^2)$ Epistemic	Assumes $f^{+} \perp f \mid u$, training f, response f $r(f^{*} \mid f) = r(f^{*} \mid f)$	Markov Chain $X_{t+1} \perp X_{1:t-1} X_t$
Tower Law $\mathbb{E}[X] = \mathbb{E}_{v}[\mathbb{E}_{x}[X Y]]$	(lack of data) and <i>Aleatoric</i> (noise) uncertainties	$p(f^{*},f) \approx q(f^{*},f) = \int q(f^{*} u)q(f u)p(u)du$ So D approximation $q_{ij} = (f u)$ has the same mean	Metropolis-Hasting MCMC old state: x
$\mathbb{V}[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	Captured Online undefined $\mathbf{V}^T \mathbf{V} = \mathbf{V}^T \mathbf{V}$	son approximation $q_{Son}(f u)$ has the same mean as $n(f u)$ but variance is set to 0.	1. Proposal $x \sim R(X X = x)$ proposed state: x'
$\mathbb{V}_{\mathbf{x}}[b+cX] = c^2 \mathbb{V}_{\mathbf{x}}[X]$	Online updating: $A_{new}A_{new} = A A + x_{i+1}x_{i+1}$	Approvimete Inforence	2. $P(X = x X = x) = \alpha$ $P(X = x X = x) = 1 - \alpha$
$\operatorname{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}(X)(Y - \mathbb{E}(Y))] =$	$\sum_{new y_{new}} -x_y + y_{t+1} x_{t+1}$	Approximate interence	Acceptance probability $\alpha = \min\left(1, \frac{Q(x) - P(x)}{Q(x)R(x' x)}\right)$
$\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$	Choosing hyperparameters $\lambda \equiv O_n^{-}/O_p^{-}$ via cross-	Laplace Approximation uses a Gaussian approx-	Use Gibbs sampling, from X_i given all other, to specify the proposal distribution. Pandom order
$\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\mathrm{Cov}[X,Y]$	validation. Estimate $\sigma_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{w}^T x_i)^2$, then	second-order Taylor expansion around the posterior	Gibbs satisfies DBE practical variant doesn't but
Change of variables: $f_y(y) = f_x(x) dg(x)/dx ^{-1}$	solve for $\hat{\sigma}_p^2$. Otherwise, use marginal likelihood.	mode. Lead to poor approximation if p has multiple	still has correct $\pi(x)$
Jensen's inequality $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$ f convex	Kalman Filters (KF)	modes.	Variational inference scales better than sampling
$f(\mathbb{E}[X]) \ge \mathbb{E}[f(X)]$ f concave	Assume conditional linear Gaussian dependencies be-	Stochastic Gradient Descent converges to (local)	techniques like Metropolis-Hasting.
Robbins Monro (RM) conditions If sequence ε_t	tween states (X) and observations (Y). $X_{t+1} \perp y_{1:t} X_t$	Variational Informace (VII)	Because joint sample at time t depends on sample at 1 the large signal and 1 the large signal 1 and 1
satisfies $\sum_{t} \varepsilon_{t} = \infty$ and $\sum_{t} \varepsilon_{t}^{2} < \infty$ then it will converge	Motion model: $X_{t+1} = FX_t + \varepsilon_t \varepsilon_t \sim \mathcal{N}(0, \Sigma_x)$		l = 1, the fallowing theorem to compute expectation
to optimum with probability 1. Can be used to check	Sensor model: $Y_t = HX_t + \eta_t \eta_t \sim \mathcal{N}(0, \Sigma_y)$	Approx. unnormalized distribution p by a simple (tractable) distribution q which depends on some	with MCMC instead:
	Bayesian Filtering in KFs	parameters $\lambda : p(\theta y) - \frac{1}{2}p(\theta y) \approx q(\theta \lambda)$	Ergodic Theorem with <i>D</i> a finite state space
Entropy and mutual information	Update: $\mu_{t+1} = \frac{\sigma_y \mu_t + (\sigma_t^2 + \sigma_x^2)y_{t+1}}{\sigma_t^2 + \sigma_x^2 + \sigma_x^2}$ $\sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_y^2}{\sigma_t^2 + \sigma_x^2 + \sigma_y^2}$	Only twice as expensive as MAP inference for	$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \sum_{x \in D} \pi(x) f(x) = \mathbb{E}_{x \sim \pi} f(x)$
$H(X) = \mathbb{E}_{x \sim P(x)}[-\log P(X)] = -\sum_{i=1}^{n} P(x_i) \log P(x_i)$	BLR is a form of KF	diagonal q. Only need to be able to differentiate the	With continuous RVs, use MALA for proposal dis
$H(X,Y) = H(Y,X) \qquad H(X \cdot Y) = H(X) + H(Y)$	Gaussian Processes (GP)	(unnormalized) joint proba. density p and q . The	tribution, which converges to $\pi(x)$ for log-concave
$H(X,Y) \le H(X) + H(Y) \qquad H(X) = \mathbb{E}_X[I(x)]$	GP is a normal distribution over functions	quality of inference is hard to analyze.	distributions, e.g. Bayesian logistic regression $p(x) = \frac{1}{2} \exp(-f(x))$ is log-concave if the energy func-
$H(X Y) = \mathbb{E}_{y \sim p(y)}[H(X Y=y)] = H(X,Y) - H(Y)$	GP with linear kernel = BLR	Kullback–Leibler Divergence	$p(x) = \overline{z} \exp(-f(x))$ is log-concave if the energy func- tion $f(x)$ is convex. For large data sets, use SCLD
$I(X;Y) = KL(p(X,Y) \parallel p(X)p(Y))$	reulcuon gives closed form formulas. Posterior	$ KL(q \ p) = \mathbb{E}_{\theta \sim q}[\log_{p(\theta)}^{q(\theta)}] = \int q(\theta) \log_{p(\theta)}^{q(\theta)} d\theta \ge 0$	which convergences to $\pi(\mathbf{r})$ if $\mathbf{n} \in \mathcal{O}(t^{-1/3})$
$I(X;Y) = H(X) - H(X Y) = I(Y;X) \le I(X;Y,Z)$	Exact computation requires $O(n^3)$ but speedup	$ KL(q \parallel p) = 0 \Leftrightarrow p = q$	MALA and SGLD can be improved by adding
If q is Gaussian: $H(q) = \frac{1}{2} \ln 2\pi e\Sigma q \sim \mathcal{N}(\mu, \Sigma)$	with parallelism, local GP methods, kernel function	$KL(q \parallel p) \neq KL(p \parallel q) \Rightarrow KL$ is not a distance	momentum, resulting in HMC (remembring what
If $Y = X + \varepsilon$ then $H(Y X) = H(\varepsilon)$	approximations, inducing point methods	$\arg \min_{a} KL(q \parallel p) = \arg \max_{a} \mathcal{L}(\lambda)$ (c.f. ELBO)	the gradient was before)